Low-frequency noise in reverse-biased Schottky barriers on InAlN/AlN/GaN heterostructures
We present low-frequency gate noise characteristics of InAlN/AlN/GaN heterostructures grown by low-pressure metal-organic vapor phase epitaxy. The electric field in the InAlN barrier is determined from C-V measurements and is used for gate leakage current modeling. The latter is dominated by Poole-F...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-11, Vol.105 (19) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present low-frequency gate noise characteristics of InAlN/AlN/GaN heterostructures grown by low-pressure metal-organic vapor phase epitaxy. The electric field in the InAlN barrier is determined from C-V measurements and is used for gate leakage current modeling. The latter is dominated by Poole-Frenkel emission at low reverse bias and Fowler-Nordheim tunneling at high electric field. Several useful physical parameters are extracted from a gate leakage model including polarizations-induced field. The gate noise fluctuations are dominated by trapping-detrapping processes including discrete traps and two continuums of traps with distributed time constants. Burst noise with several levels and time constant values is also observed in these structures. Low-frequency noise measurements confirm the presence of field-assisted emission from trap states. The 1/f noise model of McWorther is used to explain the 1/f-like noise behavior in a restricted frequency range. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4901906 |