Shear mechanical anisotropy of side chain liquid-crystal elastomers : Influence of sample preparation
We study the mechanical anisotropy of a series of uniaxial side chain nematic elastomers prepared with the same chemical composition but with different preparation protocols. For all the compounds, the experiments performed as a function of temperature show no discontinuity in both G' (//) and...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2006-08, Vol.20 (4), p.369-378, Article 369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the mechanical anisotropy of a series of uniaxial side chain nematic elastomers prepared with the same chemical composition but with different preparation protocols. For all the compounds, the experiments performed as a function of temperature show no discontinuity in both G' (//) and G' ( perpendicular) (the labels // and perpendicular stand for the director parallel, respectively perpendicular to the shear displacement) around the nematic-isotropic (N-I) phase transition temperature determined by DSC. They also all show a small decrease in G' (//) starting at temperatures well above this temperature (from approximately 4( degrees ) C to approximately 20( degrees ) C depending on the compound studied) and leading to a small hydrodynamic value of the G' ( perpendicular)/G' (//) ratio. The measurements taken as a function of frequency show that the second plateau in G' (//) and the associated dip in G (//)" expected from dynamic semi-soft elasticity are not observed. These results can be described by the de Gennes model, which predicts small elastic anisotropy in the hydrodynamic and linear regimes. They correspond to the behavior expected for compounds beyond the mechanical critical point, which is consistent with the NMR and specific heat measurements taken on similar compounds. We also show that a reduction in the cross-linking density does not change the non-soft character of the mechanical response. From the measurements taken as a function of frequency at several temperatures we deduce that the time-temperature superposition method does not apply. From these measurements, we also determine the temperature dependence of the longest relaxation time tau(E) of the network for the situations where the director is either parallel or perpendicular to the shear velocity. Finally, we discuss the influence on the measurements of the mechanical constraint associated with the fact that the samples cannot change their shape around the pseudo phase transition, because of their strong adherence on the sample-bearing glass slides. |
---|---|
ISSN: | 1292-8941 1292-895X |
DOI: | 10.1140/epje/i2005-10132-5 |