On vertex neighborhood in minimal imperfect graphs

Lubiw (J. Combin. Theory Ser. B 51 (1991) 24) conjectures that in a minimal imperfect Berge graph, the neighborhood graph N(v) of any vertex v must be connected; this conjecture implies a well known Chvátal's conjecture (Chvátal, First Workshop on Perfect Graphs, Princeton, 1993) which states t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2001-04, Vol.233 (1), p.211-218
1. Verfasser: Barré, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue 1
container_start_page 211
container_title Discrete mathematics
container_volume 233
creator Barré, Vincent
description Lubiw (J. Combin. Theory Ser. B 51 (1991) 24) conjectures that in a minimal imperfect Berge graph, the neighborhood graph N(v) of any vertex v must be connected; this conjecture implies a well known Chvátal's conjecture (Chvátal, First Workshop on Perfect Graphs, Princeton, 1993) which states that N(v) must contain a P 4 . In this note we will prove an intermediary conjecture for some classes of minimal imperfect graphs. It is well known that a graph is P 4 -free if, and only if, every induced subgraph with at least two vertices either is disconnected or its complement is disconnected; this characterization implies that P 4 -free graphs can be constructed by complete join and disjoint union from isolated vertices. We propose to replace P 4 -free graphs by a similar construction using bipartite graphs instead of isolated vertices.
doi_str_mv 10.1016/S0012-365X(00)00240-5
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02084794v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X00002405</els_id><sourcerecordid>S0012365X00002405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-3c33950db37819c425f4f7e82f6fafe85c0dcaa2b9b88a7909f5dec4bfb780f33</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QdijPaxOks1ucpJSrBUKPajQW8hmJ91Iu1uSpei_d7eVXj0NM7z3mPcRck_hkQLNn94BKEt5LtYPABMAlkEqLsiIyoKluaTrSzI6S67JTYxf0O85lyPCVk1ywNDhd9Kg39RlG-q2rRLfJDvf-J3ZJn63x-DQdskmmH0db8mVM9uId39zTD7nLx-zRbpcvb7NpsvUMqm6lFvOlYCq5IWkymZMuMwVKJnLnXEohYXKGsNKVUppCgXKiQptVrqykOA4H5PJKbc2W70P_S_hR7fG68V0qYcbMJBZobID7bXipLWhjTGgOxso6AGSPkLSAwENoI-QtOh9zycf9kUOHoOO1mNjsfKhb6yr1v-T8AuP825j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On vertex neighborhood in minimal imperfect graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Barré, Vincent</creator><creatorcontrib>Barré, Vincent</creatorcontrib><description>Lubiw (J. Combin. Theory Ser. B 51 (1991) 24) conjectures that in a minimal imperfect Berge graph, the neighborhood graph N(v) of any vertex v must be connected; this conjecture implies a well known Chvátal's conjecture (Chvátal, First Workshop on Perfect Graphs, Princeton, 1993) which states that N(v) must contain a P 4 . In this note we will prove an intermediary conjecture for some classes of minimal imperfect graphs. It is well known that a graph is P 4 -free if, and only if, every induced subgraph with at least two vertices either is disconnected or its complement is disconnected; this characterization implies that P 4 -free graphs can be constructed by complete join and disjoint union from isolated vertices. We propose to replace P 4 -free graphs by a similar construction using bipartite graphs instead of isolated vertices.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/S0012-365X(00)00240-5</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Discrete Mathematics</subject><ispartof>Discrete mathematics, 2001-04, Vol.233 (1), p.211-218</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6719-1943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0012-365X(00)00240-5$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02084794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barré, Vincent</creatorcontrib><title>On vertex neighborhood in minimal imperfect graphs</title><title>Discrete mathematics</title><description>Lubiw (J. Combin. Theory Ser. B 51 (1991) 24) conjectures that in a minimal imperfect Berge graph, the neighborhood graph N(v) of any vertex v must be connected; this conjecture implies a well known Chvátal's conjecture (Chvátal, First Workshop on Perfect Graphs, Princeton, 1993) which states that N(v) must contain a P 4 . In this note we will prove an intermediary conjecture for some classes of minimal imperfect graphs. It is well known that a graph is P 4 -free if, and only if, every induced subgraph with at least two vertices either is disconnected or its complement is disconnected; this characterization implies that P 4 -free graphs can be constructed by complete join and disjoint union from isolated vertices. We propose to replace P 4 -free graphs by a similar construction using bipartite graphs instead of isolated vertices.</description><subject>Computer Science</subject><subject>Discrete Mathematics</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QdijPaxOks1ucpJSrBUKPajQW8hmJ91Iu1uSpei_d7eVXj0NM7z3mPcRck_hkQLNn94BKEt5LtYPABMAlkEqLsiIyoKluaTrSzI6S67JTYxf0O85lyPCVk1ywNDhd9Kg39RlG-q2rRLfJDvf-J3ZJn63x-DQdskmmH0db8mVM9uId39zTD7nLx-zRbpcvb7NpsvUMqm6lFvOlYCq5IWkymZMuMwVKJnLnXEohYXKGsNKVUppCgXKiQptVrqykOA4H5PJKbc2W70P_S_hR7fG68V0qYcbMJBZobID7bXipLWhjTGgOxso6AGSPkLSAwENoI-QtOh9zycf9kUOHoOO1mNjsfKhb6yr1v-T8AuP825j</recordid><startdate>20010428</startdate><enddate>20010428</enddate><creator>Barré, Vincent</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6719-1943</orcidid></search><sort><creationdate>20010428</creationdate><title>On vertex neighborhood in minimal imperfect graphs</title><author>Barré, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-3c33950db37819c425f4f7e82f6fafe85c0dcaa2b9b88a7909f5dec4bfb780f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computer Science</topic><topic>Discrete Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barré, Vincent</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barré, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On vertex neighborhood in minimal imperfect graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2001-04-28</date><risdate>2001</risdate><volume>233</volume><issue>1</issue><spage>211</spage><epage>218</epage><pages>211-218</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Lubiw (J. Combin. Theory Ser. B 51 (1991) 24) conjectures that in a minimal imperfect Berge graph, the neighborhood graph N(v) of any vertex v must be connected; this conjecture implies a well known Chvátal's conjecture (Chvátal, First Workshop on Perfect Graphs, Princeton, 1993) which states that N(v) must contain a P 4 . In this note we will prove an intermediary conjecture for some classes of minimal imperfect graphs. It is well known that a graph is P 4 -free if, and only if, every induced subgraph with at least two vertices either is disconnected or its complement is disconnected; this characterization implies that P 4 -free graphs can be constructed by complete join and disjoint union from isolated vertices. We propose to replace P 4 -free graphs by a similar construction using bipartite graphs instead of isolated vertices.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0012-365X(00)00240-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6719-1943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2001-04, Vol.233 (1), p.211-218
issn 0012-365X
1872-681X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02084794v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Computer Science
Discrete Mathematics
title On vertex neighborhood in minimal imperfect graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20vertex%20neighborhood%20in%20minimal%20imperfect%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Barr%C3%A9,%20Vincent&rft.date=2001-04-28&rft.volume=233&rft.issue=1&rft.spage=211&rft.epage=218&rft.pages=211-218&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/S0012-365X(00)00240-5&rft_dat=%3Celsevier_hal_p%3ES0012365X00002405%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0012365X00002405&rfr_iscdi=true