On vertex neighborhood in minimal imperfect graphs

Lubiw (J. Combin. Theory Ser. B 51 (1991) 24) conjectures that in a minimal imperfect Berge graph, the neighborhood graph N(v) of any vertex v must be connected; this conjecture implies a well known Chvátal's conjecture (Chvátal, First Workshop on Perfect Graphs, Princeton, 1993) which states t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2001-04, Vol.233 (1), p.211-218
1. Verfasser: Barré, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lubiw (J. Combin. Theory Ser. B 51 (1991) 24) conjectures that in a minimal imperfect Berge graph, the neighborhood graph N(v) of any vertex v must be connected; this conjecture implies a well known Chvátal's conjecture (Chvátal, First Workshop on Perfect Graphs, Princeton, 1993) which states that N(v) must contain a P 4 . In this note we will prove an intermediary conjecture for some classes of minimal imperfect graphs. It is well known that a graph is P 4 -free if, and only if, every induced subgraph with at least two vertices either is disconnected or its complement is disconnected; this characterization implies that P 4 -free graphs can be constructed by complete join and disjoint union from isolated vertices. We propose to replace P 4 -free graphs by a similar construction using bipartite graphs instead of isolated vertices.
ISSN:0012-365X
1872-681X
DOI:10.1016/S0012-365X(00)00240-5