Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures

This paper presents an extensive characterization and modeling of a commercial 28-nm FDSOI CMOS process operating down to cryogenic temperatures. The important cryogenic phenomena influencing this technology are discussed. The low-temperature transfer characteristics including body-biasing are model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid-state electronics 2019-09, Vol.159, p.106-115
Hauptverfasser: Beckers, Arnout, Jazaeri, Farzan, Bohuslavskyi, Heorhii, Hutin, Louis, De Franceschi, Silvano, Enz, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an extensive characterization and modeling of a commercial 28-nm FDSOI CMOS process operating down to cryogenic temperatures. The important cryogenic phenomena influencing this technology are discussed. The low-temperature transfer characteristics including body-biasing are modeled over a wide temperature range (room temperature down to 4.2 K) using the design-oriented simplified-EKV model. The trends of the free-carrier mobilities versus temperature in long and short-narrow devices are extracted from dc measurements down to 1.4 K and 4.2 K respectively, using a recently-proposed method based on the output conductance. A cryogenic-temperature-induced mobility degradation is observed on long pMOS, leading to a maximum hole mobility around 77 K. This work sets the stage for preparing industrial design kits with physics-based cryogenic compact models, a prerequisite for the successful co-integration of FDSOI CMOS circuits with silicon qubits operating at deep-cryogenic temperatures.
ISSN:0038-1101
1879-2405
DOI:10.1016/j.sse.2019.03.033