Rudin--Shapiro sequences along squares
We estimate exponential sums of the form \sum _{n\leq x} f(n^2) \mathrm {e}(\vartheta n) for a large class of digital functions f and \vartheta \in \mathbb{R}. We deduce from these estimates the distribution along squares of this class of digital functions which includes the Rudin-Shapiro sequence a...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2018-11, Vol.370 (11), p.7899-7921 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We estimate exponential sums of the form \sum _{n\leq x} f(n^2) \mathrm {e}(\vartheta n) for a large class of digital functions f and \vartheta \in \mathbb{R}. We deduce from these estimates the distribution along squares of this class of digital functions which includes the Rudin-Shapiro sequence and some of its generalizations. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7210 |