A sprouting tree model for random boolean functions

ABSTRACT We define a new probability distribution for Boolean functions of k variables. Consider the random Binary Search Tree of size n, and label its internal nodes by connectives and its leaves by variables or their negations. This random process defines a random Boolean expression which represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2015-12, Vol.47 (4), p.635-662
Hauptverfasser: Chauvin, Brigitte, Gardy, Danièle, Mailler, Cécile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We define a new probability distribution for Boolean functions of k variables. Consider the random Binary Search Tree of size n, and label its internal nodes by connectives and its leaves by variables or their negations. This random process defines a random Boolean expression which represents a random Boolean function. Finally, let n tend to infinity: the asymptotic distribution on Boolean functions exists; we call it the sprouting tree distribution. We study this model and compare it with two previously‐known distributions induced by two other random trees: the Catalan tree and the Galton‐Watson tree. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 635–662, 2015
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20567