Quantum speed limit and optimal control of many-boson dynamics

We extend the concept of quantum speed limit -- the minimal time needed to perform a driven evolution -- to complex interacting many-body systems. We investigate a prototypical many-body system, a bosonic Josephson junction, at increasing levels of complexity: (a) within the two-mode approximation {...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2015-12, Vol.92 (6), Article 062110
Hauptverfasser: Brouzos, Ioannis, Streltsov, Alexej I., Negretti, Antonio, Said, Ressa S., Caneva, Tommaso, Montangero, Simone, Calarco, Tommaso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the concept of quantum speed limit -- the minimal time needed to perform a driven evolution -- to complex interacting many-body systems. We investigate a prototypical many-body system, a bosonic Josephson junction, at increasing levels of complexity: (a) within the two-mode approximation {corresponding to} a nonlinear two-level system, (b) at the mean-field level by solving the nonlinear Gross-Pitaevskii equation in a double well potential, and (c) at an exact many-body level by solving the time-dependent many-body Schr\"odinger equation. We propose a control protocol to transfer atoms from the ground state of a well to the ground state of the neighbouring well. Furthermore, we show that the detrimental effects of the inter-particle repulsion can be eliminated by means of a compensating control pulse, yielding, quite surprisingly, an enhancement of the transfer speed because of the particle interaction -- in contrast to the self-trapping scenario. Finally, we perform numerical optimisations of both the nonlinear and the (exact) many-body quantum dynamics in order to further enhance the transfer efficiency close to the quantum speed limit.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.92.062110