Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets

Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-03, Vol.11 (10), p.10128-10134
Hauptverfasser: Dufour, Marion, Izquierdo, Eva, Livache, Clément, Martinez, Bertille, Silly, Mathieu G, Pons, Thomas, Lhuillier, Emmanuel, Delerue, Christophe, Ithurria, Sandrine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to finely tune the color of these NPLs from green to red, making them extremely interesting as phosphors for wide-gamut display. In addition, using a combination of luminescence spectroscopy, tight-binding simulation, transport, and photoemission, we provide a consistent picture for the Ag+-doped CdSe NPLs. The Ag-activated state is strongly bound and located 340 meV above the valence band of the bulk material. The Ag dopant induces a relative shift of the Fermi level toward the valence band by up to 400 meV but preserves the n-type nature of the material.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b18650