Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets
Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-03, Vol.11 (10), p.10128-10134 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to finely tune the color of these NPLs from green to red, making them extremely interesting as phosphors for wide-gamut display. In addition, using a combination of luminescence spectroscopy, tight-binding simulation, transport, and photoemission, we provide a consistent picture for the Ag+-doped CdSe NPLs. The Ag-activated state is strongly bound and located 340 meV above the valence band of the bulk material. The Ag dopant induces a relative shift of the Fermi level toward the valence band by up to 400 meV but preserves the n-type nature of the material. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b18650 |