Isochronous centers of polynomial Hamiltonian systems and a conjecture of Jarque and Villadelprat

We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for quadratic and quartic systems. Using the correction of a vector field to characterize isochronicity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2019-04, Vol.266 (9), p.5713-5747
Hauptverfasser: Cresson, Jacky, Palafox, Jordy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5747
container_issue 9
container_start_page 5713
container_title Journal of Differential Equations
container_volume 266
creator Cresson, Jacky
Palafox, Jordy
description We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for quadratic and quartic systems. Using the correction of a vector field to characterize isochronicity and explicit computations of this quantity for polynomial vector fields, we are able to describe a very large class of nonisochronous Hamiltonian systems of even arbitrarily large degree.
doi_str_mv 10.1016/j.jde.2018.10.032
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02020432v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002203961830620X</els_id><sourcerecordid>oai_HAL_hal_02020432v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-65256a4c49fcddd5e3e6639fccc7053ec72428106554e0b5288319ed6cd081d23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwA9iyMiSc7dhNxVRVQIsqsQCrZeyL6iiJi51W6r_HoYgR3XC6j3fSPUJuKRQUqLxvisZiwYBWqS6AszMyoTCHnM04OycTAMZy4HN5Sa5ibAAoFVJMiF5Hb7bB934fM4P9gCFmvs52vj32vnO6zVa6c-3ge6f7LB7jgF3MdG8znRnfN2iGfcARedHha48_ow_Xttpiuwt6uCYXtW4j3vzmKXl_enxbrvLN6_N6udjkhjM55FIwIXVpynltrLUCOUrJU2HMDARHM2MlqyhIIUqET8GqitM5WmksVNQyPiV3p7tb3apdcJ0OR-W1U6vFRo09YClKzg407dLTrgk-xoD1H0BBjT5Vo5JPNfocW8lnYh5ODKYnDg6DisZhb9C6kCQo690_9DfK434C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isochronous centers of polynomial Hamiltonian systems and a conjecture of Jarque and Villadelprat</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cresson, Jacky ; Palafox, Jordy</creator><creatorcontrib>Cresson, Jacky ; Palafox, Jordy</creatorcontrib><description>We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for quadratic and quartic systems. Using the correction of a vector field to characterize isochronicity and explicit computations of this quantity for polynomial vector fields, we are able to describe a very large class of nonisochronous Hamiltonian systems of even arbitrarily large degree.</description><identifier>ISSN: 0022-0396</identifier><identifier>EISSN: 1090-2732</identifier><identifier>DOI: 10.1016/j.jde.2018.10.032</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Dynamical Systems ; Elsarticle.cls ; Elsevier ; LaTeX ; Mathematics ; Template</subject><ispartof>Journal of Differential Equations, 2019-04, Vol.266 (9), p.5713-5747</ispartof><rights>2018 Elsevier Inc.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-65256a4c49fcddd5e3e6639fccc7053ec72428106554e0b5288319ed6cd081d23</cites><orcidid>0000-0002-2162-7609 ; 0000-0002-0936-624X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jde.2018.10.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02020432$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cresson, Jacky</creatorcontrib><creatorcontrib>Palafox, Jordy</creatorcontrib><title>Isochronous centers of polynomial Hamiltonian systems and a conjecture of Jarque and Villadelprat</title><title>Journal of Differential Equations</title><description>We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for quadratic and quartic systems. Using the correction of a vector field to characterize isochronicity and explicit computations of this quantity for polynomial vector fields, we are able to describe a very large class of nonisochronous Hamiltonian systems of even arbitrarily large degree.</description><subject>Dynamical Systems</subject><subject>Elsarticle.cls</subject><subject>Elsevier</subject><subject>LaTeX</subject><subject>Mathematics</subject><subject>Template</subject><issn>0022-0396</issn><issn>1090-2732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwA9iyMiSc7dhNxVRVQIsqsQCrZeyL6iiJi51W6r_HoYgR3XC6j3fSPUJuKRQUqLxvisZiwYBWqS6AszMyoTCHnM04OycTAMZy4HN5Sa5ibAAoFVJMiF5Hb7bB934fM4P9gCFmvs52vj32vnO6zVa6c-3ge6f7LB7jgF3MdG8znRnfN2iGfcARedHha48_ow_Xttpiuwt6uCYXtW4j3vzmKXl_enxbrvLN6_N6udjkhjM55FIwIXVpynltrLUCOUrJU2HMDARHM2MlqyhIIUqET8GqitM5WmksVNQyPiV3p7tb3apdcJ0OR-W1U6vFRo09YClKzg407dLTrgk-xoD1H0BBjT5Vo5JPNfocW8lnYh5ODKYnDg6DisZhb9C6kCQo690_9DfK434C</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Cresson, Jacky</creator><creator>Palafox, Jordy</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2162-7609</orcidid><orcidid>https://orcid.org/0000-0002-0936-624X</orcidid></search><sort><creationdate>20190415</creationdate><title>Isochronous centers of polynomial Hamiltonian systems and a conjecture of Jarque and Villadelprat</title><author>Cresson, Jacky ; Palafox, Jordy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-65256a4c49fcddd5e3e6639fccc7053ec72428106554e0b5288319ed6cd081d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dynamical Systems</topic><topic>Elsarticle.cls</topic><topic>Elsevier</topic><topic>LaTeX</topic><topic>Mathematics</topic><topic>Template</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cresson, Jacky</creatorcontrib><creatorcontrib>Palafox, Jordy</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Differential Equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cresson, Jacky</au><au>Palafox, Jordy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isochronous centers of polynomial Hamiltonian systems and a conjecture of Jarque and Villadelprat</atitle><jtitle>Journal of Differential Equations</jtitle><date>2019-04-15</date><risdate>2019</risdate><volume>266</volume><issue>9</issue><spage>5713</spage><epage>5747</epage><pages>5713-5747</pages><issn>0022-0396</issn><eissn>1090-2732</eissn><abstract>We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for quadratic and quartic systems. Using the correction of a vector field to characterize isochronicity and explicit computations of this quantity for polynomial vector fields, we are able to describe a very large class of nonisochronous Hamiltonian systems of even arbitrarily large degree.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jde.2018.10.032</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-2162-7609</orcidid><orcidid>https://orcid.org/0000-0002-0936-624X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0396
ispartof Journal of Differential Equations, 2019-04, Vol.266 (9), p.5713-5747
issn 0022-0396
1090-2732
language eng
recordid cdi_hal_primary_oai_HAL_hal_02020432v1
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Dynamical Systems
Elsarticle.cls
Elsevier
LaTeX
Mathematics
Template
title Isochronous centers of polynomial Hamiltonian systems and a conjecture of Jarque and Villadelprat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isochronous%20centers%20of%20polynomial%20Hamiltonian%20systems%20and%20a%20conjecture%20of%20Jarque%20and%20Villadelprat&rft.jtitle=Journal%20of%20Differential%20Equations&rft.au=Cresson,%20Jacky&rft.date=2019-04-15&rft.volume=266&rft.issue=9&rft.spage=5713&rft.epage=5747&rft.pages=5713-5747&rft.issn=0022-0396&rft.eissn=1090-2732&rft_id=info:doi/10.1016/j.jde.2018.10.032&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02020432v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S002203961830620X&rfr_iscdi=true