Isochronous centers of polynomial Hamiltonian systems and a conjecture of Jarque and Villadelprat

We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for quadratic and quartic systems. Using the correction of a vector field to characterize isochronicity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2019-04, Vol.266 (9), p.5713-5747
Hauptverfasser: Cresson, Jacky, Palafox, Jordy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the conjecture of Jarque and Villadelprat stating that every center of a planar polynomial Hamiltonian system of even degree is nonisochronous. This conjecture has already been proved for quadratic and quartic systems. Using the correction of a vector field to characterize isochronicity and explicit computations of this quantity for polynomial vector fields, we are able to describe a very large class of nonisochronous Hamiltonian systems of even arbitrarily large degree.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2018.10.032