Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer
This Review aims to be a comprehensive, authoritative, and critical review of general interest to the chemistry community (both academia and industry) as it contains an extensive overview of all published data on the homopolymerization of tetrafluoroethylene (TFE), detailing the TFE homopolymerizati...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2019-02, Vol.119 (3), p.1763-1805 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This Review aims to be a comprehensive, authoritative, and critical review of general interest to the chemistry community (both academia and industry) as it contains an extensive overview of all published data on the homopolymerization of tetrafluoroethylene (TFE), detailing the TFE homopolymerization process and the resulting chemical and physical properties. Several reviews and encyclopedia chapters on the properties and applications of fluoropolymers in general have been published, including various reviews that extensively report copolymers of TFE (listed below). Despite this, a thorough review of the specific methods of synthesis of the homopolymer, and the relationships between synthesis conditions and the physicochemical properties of the material prepared, has not been available. This Review intends to fill that gap. As known, PTFE and its marginally modified derivatives comprise some 60–65% of the total international fluoropolymer market with a global increase of ca. 7% per annum of its production. Numerous companies, such as Asahi Glass, Solvay Specialty Polymers, Daikin, DuPont/Chemours, Juhua, 3F, 3M/Dyneon, etc., produce TFE homopolymers. Such polymers, both high-molecular-mass materials and waxes, are chemically inert and hydrophobic and exhibit an excellent thermal stability as well as an exceptionally low coefficient of friction. These polymers find use in applications ranging from coatings and lubrication to pyrotechnics, and an extensive industry (electronic, aerospace, wires and cables, and textiles) has been built around them. South Africa, being the third largest producer of fluorspar (CaF2), the precursor to hydrogen fluoride and fluorine, has embarked on an industrial initiative to locally beneficiate its fluorspar reserves, with the local production of fluoropolymers being one projected outcome. As our manuscript focuses specifically on the homopolymerization of TFE (the starting point for all fluoropolymer industries), it will be of considerable use to start-up companies and other commercial entities looking to enter the fluoropolymer market, as well as to end-user companies. The manuscript commences with a short discussion on the synthesis and production of TFE (both at industrial and laboratory scales), including the safety aspects surrounding handling (because that monomer is regarded as explosive if brought into contact with oxygen due to the formation of peroxides), transport, and storage, and then expands into detailed discus |
---|---|
ISSN: | 0009-2665 1520-6890 |
DOI: | 10.1021/acs.chemrev.8b00458 |