A New Algebra of Periodic Generalized Functions
Let $n$ denote a strictly positive integer. We construct a complex differential algebra $\mathcal G_n$ of so-called $2\pi$-periodic generalized functions. We show that the space $\mathcal D^{'(n)}_{2\pi}$ of $2\pi$-periodic distributions on $\mathbb R^n$ can be canonically embedded into $\mathc...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Analysis und ihre Anwendungen 1996, Vol.15 (1), p.57-74 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $n$ denote a strictly positive integer. We construct a complex differential algebra $\mathcal G_n$ of so-called $2\pi$-periodic generalized functions. We show that the space $\mathcal D^{'(n)}_{2\pi}$ of $2\pi$-periodic distributions on $\mathbb R^n$ can be canonically embedded into $\mathcal G_n$. Next we lay the foundation for calculation in $\mathcal G_n$. This algebra $\mathcal G_n$ enables one to solve, in a canonical way, differential problems with strong singular periodic data which have no solution in $\mathcal D^{'(n)}_{2\pi}$. |
---|---|
ISSN: | 0232-2064 1661-4534 |
DOI: | 10.4171/ZAA/688 |