Analysis of Direct Three-Dimensional Parabolic Panel Methods

Adherence boundary conditions for time dependent partial differential equations, via Chorin algorithm, can be reduced to a parabolic problem with Robin-Fourier boundary conditions in the three-dimensional context. In the spirit of panel methods, one establishes an integral formulation whose key poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2007-01, Vol.45 (6), p.2259-2297
1. Verfasser: Poncet, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adherence boundary conditions for time dependent partial differential equations, via Chorin algorithm, can be reduced to a parabolic problem with Robin-Fourier boundary conditions in the three-dimensional context. In the spirit of panel methods, one establishes an integral formulation whose key point is the estimation of the potential density, introducing a kind of panel method for tangential kinematic boundary conditions. This paper discusses explicit estimations of this density in the general case of an arbitrarily shaped three-dimensional body, which leads to a fast numerical scheme. An error analysis is also provided, involving body smoothness, the Holder exponent of the density, and whether the body presents torsion or not.
ISSN:0036-1429
1095-7170
DOI:10.1137/050625849