Analysis of Direct Three-Dimensional Parabolic Panel Methods
Adherence boundary conditions for time dependent partial differential equations, via Chorin algorithm, can be reduced to a parabolic problem with Robin-Fourier boundary conditions in the three-dimensional context. In the spirit of panel methods, one establishes an integral formulation whose key poin...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2007-01, Vol.45 (6), p.2259-2297 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adherence boundary conditions for time dependent partial differential equations, via Chorin algorithm, can be reduced to a parabolic problem with Robin-Fourier boundary conditions in the three-dimensional context. In the spirit of panel methods, one establishes an integral formulation whose key point is the estimation of the potential density, introducing a kind of panel method for tangential kinematic boundary conditions. This paper discusses explicit estimations of this density in the general case of an arbitrarily shaped three-dimensional body, which leads to a fast numerical scheme. An error analysis is also provided, involving body smoothness, the Holder exponent of the density, and whether the body presents torsion or not. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/050625849 |