An explicit formula for the free exponential modality of linear logic

The exponential modality of linear logic associates to every formula A a commutative comonoid !A which can be duplicated in the course of reasoning. Here, we explain how to compute the free commutative comonoid !A as a sequential limit of equalizers in any symmetric monoidal category where this sequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2018-08, Vol.28 (7), p.1253-1286
Hauptverfasser: MELLIÈS, PAUL-ANDRÉ, TABAREAU, NICOLAS, TASSON, CHRISTINE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exponential modality of linear logic associates to every formula A a commutative comonoid !A which can be duplicated in the course of reasoning. Here, we explain how to compute the free commutative comonoid !A as a sequential limit of equalizers in any symmetric monoidal category where this sequential limit exists and commutes with the tensor product. We apply this general recipe to a series of models of linear logic, typically based on coherence spaces, Conway games and finiteness spaces. This algebraic description unifies for the first time a number of apparently different constructions of the exponential modality in spaces and games. It also sheds light on the duplication policy of linear logic, and its interaction with classical duality and double negation completion.
ISSN:0960-1295
1469-8072
DOI:10.1017/S0960129516000426