Arithmetical modular forms and new constructions of p-adic L-functions on classical groups
Une nouvelle approche pour construire des fonctions L p-adiques pour les groupes classiques est présentée comme un projet en cours avec Thanh Hung Dang and Anh Tuan Do (Hanoi, Vietnam). Pour un groupe algébrique G sur un corps de nombres K les fonctions L complexes sont certains produits d’Euler L(s...
Gespeichert in:
Veröffentlicht in: | Annales de la faculté des sciences de Toulouse. Mathématiques 2016, Vol.25 (2-3), p.543-568 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Une nouvelle approche pour construire des fonctions L p-adiques pour les groupes classiques est présentée comme un projet en cours avec Thanh Hung Dang and Anh Tuan Do (Hanoi, Vietnam). Pour un groupe algébrique G sur un corps de nombres K les fonctions L complexes sont certains produits d’Euler L(s,π,r,χ). En particulier, notre construction couvre les fonctions L étudiées par Shimura dans [52] via la méthode de doublement de Piatetski-Shapiro et Rallis. Un avatar p-adique L(s,π,r,χ) est une fonction p-adique analytique L p (s,π,r,χ) de s∈ℤ p , χmodp r interpolant les valeurs spéciales normalisées algébriques L * (s,π,r,χ) de la fonction L complexe analytique attachée. Nous utilisons les formes presque-holomorphes et quasi-modulaires générales pour calculer et pour interpoler les valeurs spéciales normalisées. |
---|---|
ISSN: | 0240-2963 2258-7519 |