Vortex patterns and sheets in segregated two component Bose–Einstein condensates

We study minimizers of a Gross–Pitaevskii energy describing a two-component Bose–Einstein condensate set into rotation. We consider the case of segregation of the components in the Thomas–Fermi regime, where a small parameter ε conveys a singular perturbation. We estimate the energy as a term due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of Variations and Partial Differential Equations 2020-02, Vol.59 (1), Article 19
Hauptverfasser: Aftalion, Amandine, Sandier, Etienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study minimizers of a Gross–Pitaevskii energy describing a two-component Bose–Einstein condensate set into rotation. We consider the case of segregation of the components in the Thomas–Fermi regime, where a small parameter ε conveys a singular perturbation. We estimate the energy as a term due to a perimeter minimization and a term due to rotation. In particular, we prove a new estimate concerning the error of a Modica Mortola type energy away from the interface. For large rotations, we show that the interface between the components gets long, which is a first indication towards vortex sheets.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-019-1637-6