Vortex patterns and sheets in segregated two component Bose–Einstein condensates
We study minimizers of a Gross–Pitaevskii energy describing a two-component Bose–Einstein condensate set into rotation. We consider the case of segregation of the components in the Thomas–Fermi regime, where a small parameter ε conveys a singular perturbation. We estimate the energy as a term due to...
Gespeichert in:
Veröffentlicht in: | Calculus of Variations and Partial Differential Equations 2020-02, Vol.59 (1), Article 19 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study minimizers of a Gross–Pitaevskii energy describing a two-component Bose–Einstein condensate set into rotation. We consider the case of segregation of the components in the Thomas–Fermi regime, where a small parameter
ε
conveys a singular perturbation. We estimate the energy as a term due to a perimeter minimization and a term due to rotation. In particular, we prove a new estimate concerning the error of a Modica Mortola type energy away from the interface. For large rotations, we show that the interface between the components gets long, which is a first indication towards vortex sheets. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-019-1637-6 |