Where Sobolev interacts with Gagliardo–Nirenberg
We investigate the validity of the fractional Gagliardo-Nirenberg-Sobolev inequality(1)‖f‖Wr,q(Ω)≲‖f‖Ws1,p1(Ω)θ‖f‖Ws2,p2(Ω)1−θ,∀f∈Ws1,p1(Ω)∩Ws2,p2(Ω). Here, s1,s2,r are non-negative numbers (not necessarily integers), 1≤p1,p2,q≤∞, and we assume, for some θ∈(0,1), the standard relations(2)r...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2019-10, Vol.277 (8), p.2839-2864 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the validity of the fractional Gagliardo-Nirenberg-Sobolev inequality(1)‖f‖Wr,q(Ω)≲‖f‖Ws1,p1(Ω)θ‖f‖Ws2,p2(Ω)1−θ,∀f∈Ws1,p1(Ω)∩Ws2,p2(Ω).
Here, s1,s2,r are non-negative numbers (not necessarily integers), 1≤p1,p2,q≤∞, and we assume, for some θ∈(0,1), the standard relations(2)r |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2019.02.019 |