Hermite density deconvolution

We consider the additive model: Z = X + ε, where X and ε are independent. We construct a new estimator of the density of X from n observations of Z. We propose a projection method which exploits the specific properties of the Hermite basis. We study the quality of the resulting estimator by proving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alea (2006) 2020, Vol.17 (1), p.419-443
1. Verfasser: Sacko, Ousmane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the additive model: Z = X + ε, where X and ε are independent. We construct a new estimator of the density of X from n observations of Z. We propose a projection method which exploits the specific properties of the Hermite basis. We study the quality of the resulting estimator by proving a bound on the integrated quadratic risk. We then propose an adaptive estimation procedure, that is a method of selecting a relevant model. We check that our estimator reaches the classical convergence speeds of deconvolution. Numerical simulations are proposed and a comparison with the results of the method proposed in Comte and Lacour (2011) is performed.
ISSN:1980-0436
1980-0436
DOI:10.30757/ALEA.v17-17