Hermite density deconvolution
We consider the additive model: Z = X + ε, where X and ε are independent. We construct a new estimator of the density of X from n observations of Z. We propose a projection method which exploits the specific properties of the Hermite basis. We study the quality of the resulting estimator by proving...
Gespeichert in:
Veröffentlicht in: | Alea (2006) 2020, Vol.17 (1), p.419-443 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the additive model: Z = X + ε, where X and ε are independent. We construct a new estimator of the density of X from n observations of Z. We propose a projection method which exploits the specific properties of the Hermite basis. We study the quality of the resulting estimator by proving a bound on the integrated quadratic risk. We then propose an adaptive estimation procedure, that is a method of selecting a relevant model. We check that our estimator reaches the classical convergence speeds of deconvolution. Numerical simulations are proposed and a comparison with the results of the method proposed in Comte and Lacour (2011) is performed. |
---|---|
ISSN: | 1980-0436 1980-0436 |
DOI: | 10.30757/ALEA.v17-17 |