Calpain 3 is expressed in astrocytes of rat and Microcebus brain
The calcium-dependent protease calpain is involved in numerous functions, including the control of cell survival, plasticity and motility. Whereas the isoforms calpain 1 and 2 have been described as ubiquitously expressed enzymes, calpain 3 has been called “muscle-specific”, although trace amounts o...
Gespeichert in:
Veröffentlicht in: | Journal of chemical neuroanatomy 2003-02, Vol.25 (2), p.129-136 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The calcium-dependent protease calpain is involved in numerous functions, including the control of cell survival, plasticity and motility. Whereas the isoforms calpain 1 and 2 have been described as ubiquitously expressed enzymes, calpain 3 has been called “muscle-specific”, although trace amounts of calpain 3 mRNA have been detected by Northern blot in brain homogenates. In this study, we validated antibodies raised either against the peptides that were specific for a given isoform or the peptides present in all the three isoforms. We then used the anti-calpain 3 antibodies together with antibodies directed against cell-type-specific proteins to determine by double- and triple-labelling immunocytochemistry if the protease is expressed in specific cell populations of rat as well as lesser mouse lemur (
Microcebus murinus) brain. Calpain 3 was almost exclusively found in cells displaying astrocyte morphology. These cells, most of which co-expressed glial fibrillary acidic protein, were particularly numerous close to the striatal subventricular zone (where numerous neurones forming the rostral migratory stream (RMS) towards the olfactory bulbs are generated) and the RMS itself. Other immunoreactive cells were found close to the pial surface of the forebrain, in the corpus callosum and in the dentate gyrus. Calpain 3 may be involved in astrocyte plasticity and/or motility. |
---|---|
ISSN: | 0891-0618 1873-6300 |
DOI: | 10.1016/S0891-0618(02)00102-3 |