Toward safer thrombolytic agents in stroke: molecular requirements for NMDA receptor-mediated neurotoxicity

Current thrombolytic therapy for acute ischemic stroke with tissue-type plasminogen activator (tPA) has clear global benefits. Nevertheless, evidences argue that in addition to its prohemorrhagic effect, tPA might enhance excitotoxic necrosis. In the brain parenchyma, tPA, by binding to and then cle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2008-06, Vol.28 (6), p.1212-1221
Hauptverfasser: Lopez-Atalaya, Jose P, Roussel, Benoit D, Levrat, Denis, Parcq, Jérôme, Nicole, Olivier, Hommet, Yannick, Benchenane, Karim, Castel, Hervé, Leprince, Jérôme, To Van, Denis, Bureau, Ronan, Rault, Sylvain, Vaudry, Hubert, Petersen, Karl-Uwe, Santos, Jana Sopkova-de Oliveira, Ali, Carine, Vivien, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current thrombolytic therapy for acute ischemic stroke with tissue-type plasminogen activator (tPA) has clear global benefits. Nevertheless, evidences argue that in addition to its prohemorrhagic effect, tPA might enhance excitotoxic necrosis. In the brain parenchyma, tPA, by binding to and then cleaving the amino-terminal domain (ATD) of the NR1 subunit of N-methyl-d-aspartate (NMDA) glutamate receptors, increases calcium influx to toxic levels. We show here that tPA binds the ATD of the NR1 subunit by a two-sites system (KD=24 nmol/L). Although tenecteplase (TNK) and reteplase also display two-sites binding profiles, the catalytically inactive mutant TNKS478A displays a one-site binding profile and desmoteplase (DSPA), a kringle 2 (K2) domain-free plasminogen activator derived from vampire bat, does not interact with NR1. Moreover, we show that in contrast to tPA, DSPA does not promote excitotoxicity. These findings, together with three-dimensional (3D) modeling, show that a critical step for interaction of tPA with NR1 is the binding of its K2 domain, followed by the binding of its catalytic domain, which in turn cleaves the NR1 subunit at its ATD, leading to a subsequent potentiation of NMDA-induced calcium influx and neurotoxicity. This could help design safer new generation thrombolytic agents for stroke treatment.
ISSN:0271-678X
1559-7016
DOI:10.1038/jcbfm.2008.14