Julia Sets with a Wandering Branching Point

According to the Thurston No Wandering Triangle Theorem, a branching point in a locally connected quadratic Julia set is either preperiodic or precritical. Blokh and Oversteegen proved that this theorem does not hold for higher-degree Julia sets: there exist cubic polynomials whose Julia set is a lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2020-01, Vol.69 (6), p.2241-2265
Hauptverfasser: Buff, Xavier, Canela, Jordi, Roesch, Pascale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to the Thurston No Wandering Triangle Theorem, a branching point in a locally connected quadratic Julia set is either preperiodic or precritical. Blokh and Oversteegen proved that this theorem does not hold for higher-degree Julia sets: there exist cubic polynomials whose Julia set is a locally connected dendrite with a branching point which is neither preperiodic nor precritical. In this article, we re-prove this result, constructing such cubic polynomials as limits of cubic polynomials for which one critical point eventually maps to the other critical point, which eventually maps to a repelling fixed point.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2020.69.8056