Recent Advances and Perspectives on Nonadiabatic Mixed Quantum–Classical Dynamics

Nonadiabatic mixed quantum–classical (NA-MQC) dynamics methods form a class of computational theoretical approaches in quantum chemistry tailored to investigate the time evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is characterized by a partition of the mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2018-08, Vol.118 (15), p.7026-7068
Hauptverfasser: Crespo-Otero, Rachel, Barbatti, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonadiabatic mixed quantum–classical (NA-MQC) dynamics methods form a class of computational theoretical approaches in quantum chemistry tailored to investigate the time evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is characterized by a partition of the molecular system into two subsystems: one to be treated quantum mechanically (usually but not restricted to electrons) and another to be dealt with classically (nuclei). The two subsystems are connected through nonadiabatic couplings terms to enforce self-consistency. A local approximation underlies the classical subsystem, implying that direct dynamics can be simulated, without needing precomputed potential energy surfaces. The NA-MQC split allows reducing computational costs, enabling the treatment of realistic molecular systems in diverse fields. Starting from the three most well-established methodsmean-field Ehrenfest, trajectory surface hopping, and multiple spawningthis review focuses on the NA-MQC dynamics methods and programs developed in the last 10 years. It stresses the relations between approaches and their domains of application. The electronic structure methods most commonly used together with NA-MQC dynamics are reviewed as well. The accuracy and precision of NA-MQC simulations are critically discussed, and general guidelines to choose an adequate method for each application are delivered.
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.7b00577