Tunable mid IR plasmon in GZO nanocrystals

Degenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-07, Vol.7 (28), p.12030-12037
Hauptverfasser: Hamza, M K, Bluet, J-M, Masenelli-Varlot, K, Canut, B, Boisron, O, Melinon, P, Masenelli, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Degenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus of plasmon tuning. In the present work, we report on the tunable mid IR plasmon induced in degenerate Ga-doped ZnO nanocrystals. The nanocrystals are produced by a plasma expansion and exhibit unprotected surfaces. Tuning the Ga concentration allows tuning the localized surface plasmon resonance. Moreover, the plasmon resonance is characterized by a large damping. By comparing the plasmon of nanocrystal assemblies to that of nanoparticles dispersed in an alumina matrix, we investigate the possible origins of such damping. We demonstrate that it partially results from the self-organization of the naked particles and also from intrinsic inhomogeneity of dopants.
ISSN:2040-3364
2040-3372
DOI:10.1039/c5nr03378k