Rank Optimality for the Burer--Monteiro Factorization

When solving large scale semidefinite programs that admit a low-rank solution, a very efficient heuristic is the Burer-Monteiro factorization: Instead of optimizing over the full matrix, one optimizes over its low-rank factors. This strongly reduces the number of variables to optimize, but destroys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2020-01, Vol.30 (3), p.2577-2602
Hauptverfasser: Waldspurger, Irène, Waters, Alden
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When solving large scale semidefinite programs that admit a low-rank solution, a very efficient heuristic is the Burer-Monteiro factorization: Instead of optimizing over the full matrix, one optimizes over its low-rank factors. This strongly reduces the number of variables to optimize, but destroys the convexity of the problem, thus possibly introducing spurious second-order critical points which can prevent local optimization algorithms from finding the solution. Boumal, Voroninski, and Bandeira [2018] have recently shown that, when the size of the factors is of the order of the square root of the number of linear constraints, this does not happen: For almost any cost matrix, second-order critical points are global solutions. In this article, we show that this result is essentially tight: For smaller values of the size, second-order critical points are not generically optimal, even when considering only semidefinite programs with a rank 1 solution.
ISSN:1052-6234
1095-7189
DOI:10.1137/19M1255318