Lower bounds on the localisation length of balanced random quantum walks

We consider the dynamical properties of Quantum Walks defined on the d -dimensional cubic lattice, or the homogeneous tree of coordination number 2 d , with site-dependent random phases, further characterised by transition probabilities between neighbouring sites equal to 1/(2 d ). We show that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2019-09, Vol.109 (9), p.2133-2155
Hauptverfasser: Asch, Joachim, Joye, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2155
container_issue 9
container_start_page 2133
container_title Letters in mathematical physics
container_volume 109
creator Asch, Joachim
Joye, Alain
description We consider the dynamical properties of Quantum Walks defined on the d -dimensional cubic lattice, or the homogeneous tree of coordination number 2 d , with site-dependent random phases, further characterised by transition probabilities between neighbouring sites equal to 1/(2 d ). We show that the localisation length for these Balanced Random Quantum Walks can be expressed as a combinatorial expression involving sums over weighted paths on the considered graph. This expression provides lower bounds on the localisation length by restriction to paths with weight 1, which allows us to prove the localisation length diverges on the tree as d 2 . On the cubic lattice, the method yields the lower bound 1 / ln ( 2 ) for all d and allows us to bound the localisation length from below by the correlation length of self-avoiding walks computed at 1/(2 d ).
doi_str_mv 10.1007/s11005-019-01180-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01953415v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2278091176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-1aed0d8f6b58f368eb416592453b3275d8c04465e08bdaaf26d7ec4eb0ebf6073</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKf_gKeAJw_VL03TtMcx1AkFL3oOSZOunV2yJa3D_97Mit48fDx4_N7j4yF0TeCOAPD7QKKwBEgZjxSQwAmaEcZpAozCKZoB5TwpgfBzdBHCBmIoZTBDq8odjMfKjVYH7CweWoN7V8u-C3LootEbux5a7BqsZC9tbTT20mq3xftR2mHc4oPs38MlOmtkH8zVj87R2-PD63KVVC9Pz8tFldS05ENCpNGgiyZXrGhoXhiVkZyVacaooilnuqghy3JmoFBayibNNTd1ZhQY1eTA6RzdTr2t7MXOd1vpP4WTnVgtKnH04gaMZoR9kMjeTOzOu_1owiA2bvQ2vifSlBdQEsLzSKUTVXsXgjfNby0BcVxXTOsem8X3ugJiiE6hEGG7Nv6v-p_UF4RKe8s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278091176</pqid></control><display><type>article</type><title>Lower bounds on the localisation length of balanced random quantum walks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Asch, Joachim ; Joye, Alain</creator><creatorcontrib>Asch, Joachim ; Joye, Alain</creatorcontrib><description>We consider the dynamical properties of Quantum Walks defined on the d -dimensional cubic lattice, or the homogeneous tree of coordination number 2 d , with site-dependent random phases, further characterised by transition probabilities between neighbouring sites equal to 1/(2 d ). We show that the localisation length for these Balanced Random Quantum Walks can be expressed as a combinatorial expression involving sums over weighted paths on the considered graph. This expression provides lower bounds on the localisation length by restriction to paths with weight 1, which allows us to prove the localisation length diverges on the tree as d 2 . On the cubic lattice, the method yields the lower bound 1 / ln ( 2 ) for all d and allows us to bound the localisation length from below by the correlation length of self-avoiding walks computed at 1/(2 d ).</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-019-01180-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Combinatorial analysis ; Complex Systems ; Coordination numbers ; Cubic lattice ; Geometry ; Group Theory and Generalizations ; Localization ; Lower bounds ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Theoretical ; Transition probabilities</subject><ispartof>Letters in mathematical physics, 2019-09, Vol.109 (9), p.2133-2155</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-1aed0d8f6b58f368eb416592453b3275d8c04465e08bdaaf26d7ec4eb0ebf6073</citedby><cites>FETCH-LOGICAL-c397t-1aed0d8f6b58f368eb416592453b3275d8c04465e08bdaaf26d7ec4eb0ebf6073</cites><orcidid>0000-0002-4830-6979 ; 0000-0002-8765-3025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11005-019-01180-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11005-019-01180-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01953415$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Asch, Joachim</creatorcontrib><creatorcontrib>Joye, Alain</creatorcontrib><title>Lower bounds on the localisation length of balanced random quantum walks</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>We consider the dynamical properties of Quantum Walks defined on the d -dimensional cubic lattice, or the homogeneous tree of coordination number 2 d , with site-dependent random phases, further characterised by transition probabilities between neighbouring sites equal to 1/(2 d ). We show that the localisation length for these Balanced Random Quantum Walks can be expressed as a combinatorial expression involving sums over weighted paths on the considered graph. This expression provides lower bounds on the localisation length by restriction to paths with weight 1, which allows us to prove the localisation length diverges on the tree as d 2 . On the cubic lattice, the method yields the lower bound 1 / ln ( 2 ) for all d and allows us to bound the localisation length from below by the correlation length of self-avoiding walks computed at 1/(2 d ).</description><subject>Combinatorial analysis</subject><subject>Complex Systems</subject><subject>Coordination numbers</subject><subject>Cubic lattice</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Localization</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Transition probabilities</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAYxYMoOKf_gKeAJw_VL03TtMcx1AkFL3oOSZOunV2yJa3D_97Mit48fDx4_N7j4yF0TeCOAPD7QKKwBEgZjxSQwAmaEcZpAozCKZoB5TwpgfBzdBHCBmIoZTBDq8odjMfKjVYH7CweWoN7V8u-C3LootEbux5a7BqsZC9tbTT20mq3xftR2mHc4oPs38MlOmtkH8zVj87R2-PD63KVVC9Pz8tFldS05ENCpNGgiyZXrGhoXhiVkZyVacaooilnuqghy3JmoFBayibNNTd1ZhQY1eTA6RzdTr2t7MXOd1vpP4WTnVgtKnH04gaMZoR9kMjeTOzOu_1owiA2bvQ2vifSlBdQEsLzSKUTVXsXgjfNby0BcVxXTOsem8X3ugJiiE6hEGG7Nv6v-p_UF4RKe8s</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Asch, Joachim</creator><creator>Joye, Alain</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4830-6979</orcidid><orcidid>https://orcid.org/0000-0002-8765-3025</orcidid></search><sort><creationdate>20190901</creationdate><title>Lower bounds on the localisation length of balanced random quantum walks</title><author>Asch, Joachim ; Joye, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-1aed0d8f6b58f368eb416592453b3275d8c04465e08bdaaf26d7ec4eb0ebf6073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combinatorial analysis</topic><topic>Complex Systems</topic><topic>Coordination numbers</topic><topic>Cubic lattice</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Localization</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asch, Joachim</creatorcontrib><creatorcontrib>Joye, Alain</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asch, Joachim</au><au>Joye, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds on the localisation length of balanced random quantum walks</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>109</volume><issue>9</issue><spage>2133</spage><epage>2155</epage><pages>2133-2155</pages><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>We consider the dynamical properties of Quantum Walks defined on the d -dimensional cubic lattice, or the homogeneous tree of coordination number 2 d , with site-dependent random phases, further characterised by transition probabilities between neighbouring sites equal to 1/(2 d ). We show that the localisation length for these Balanced Random Quantum Walks can be expressed as a combinatorial expression involving sums over weighted paths on the considered graph. This expression provides lower bounds on the localisation length by restriction to paths with weight 1, which allows us to prove the localisation length diverges on the tree as d 2 . On the cubic lattice, the method yields the lower bound 1 / ln ( 2 ) for all d and allows us to bound the localisation length from below by the correlation length of self-avoiding walks computed at 1/(2 d ).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-019-01180-0</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4830-6979</orcidid><orcidid>https://orcid.org/0000-0002-8765-3025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-9017
ispartof Letters in mathematical physics, 2019-09, Vol.109 (9), p.2133-2155
issn 0377-9017
1573-0530
language eng
recordid cdi_hal_primary_oai_HAL_hal_01953415v1
source SpringerLink Journals - AutoHoldings
subjects Combinatorial analysis
Complex Systems
Coordination numbers
Cubic lattice
Geometry
Group Theory and Generalizations
Localization
Lower bounds
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Theoretical
Transition probabilities
title Lower bounds on the localisation length of balanced random quantum walks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20on%20the%20localisation%20length%20of%20balanced%20random%20quantum%20walks&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Asch,%20Joachim&rft.date=2019-09-01&rft.volume=109&rft.issue=9&rft.spage=2133&rft.epage=2155&rft.pages=2133-2155&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-019-01180-0&rft_dat=%3Cproquest_hal_p%3E2278091176%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278091176&rft_id=info:pmid/&rfr_iscdi=true