Lower bounds on the localisation length of balanced random quantum walks

We consider the dynamical properties of Quantum Walks defined on the d -dimensional cubic lattice, or the homogeneous tree of coordination number 2 d , with site-dependent random phases, further characterised by transition probabilities between neighbouring sites equal to 1/(2 d ). We show that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2019-09, Vol.109 (9), p.2133-2155
Hauptverfasser: Asch, Joachim, Joye, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the dynamical properties of Quantum Walks defined on the d -dimensional cubic lattice, or the homogeneous tree of coordination number 2 d , with site-dependent random phases, further characterised by transition probabilities between neighbouring sites equal to 1/(2 d ). We show that the localisation length for these Balanced Random Quantum Walks can be expressed as a combinatorial expression involving sums over weighted paths on the considered graph. This expression provides lower bounds on the localisation length by restriction to paths with weight 1, which allows us to prove the localisation length diverges on the tree as d 2 . On the cubic lattice, the method yields the lower bound 1 / ln ( 2 ) for all d and allows us to bound the localisation length from below by the correlation length of self-avoiding walks computed at 1/(2 d ).
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-019-01180-0