New metric for IQ imbalance compensation in optical QPSK coherent systems

We report on a simple alternative method for the compensation of quadrature imbalance in optical quadrature phase-shift-keying (QPSK) coherent systems. By introducing a new metric, the phase imbalance can be determined and compensated. The proposed method is theoretically and numerically analyzed. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonic network communications 2018-12, Vol.36 (3), p.326-337
Hauptverfasser: Nguyen, Trung-Hien, Scalart, Pascal, Gay, Mathilde, Bramerie, Laurent, Peucheret, Christophe, Gomez-Agis, Fausto, Sentieys, Olivier, Simon, Jean-Claude, Joindot, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on a simple alternative method for the compensation of quadrature imbalance in optical quadrature phase-shift-keying (QPSK) coherent systems. By introducing a new metric, the phase imbalance can be determined and compensated. The proposed method is theoretically and numerically analyzed. In particular, it is shown that the method exhibits a small bias of estimated phase imbalance value. Thanks to its deterministic property, this bias can be simply compensated by incorporating at the receiver a phase rotator (or phase shift) whose value can be determined based on an analytical analysis. Moreover, the algorithm is also experimentally validated through bit-error-rate and error vector magnitude (EVM) measurements. A good agreement on the performance of the proposed method with that of the Gram–Schmidt orthogonalization procedure is shown in a 20-Gbit/s optical QPSK experiment. The robustness of both methods was verified with up to 30 ∘ phase imbalance by comparing the signal with and without phase imbalance compensation. A 10% reduction in EVM is achieved with our method for a high phase imbalance of 30 ∘ , while the implementation complexity can be reduced owing to the suppression of the use of square-root operators.
ISSN:1387-974X
1572-8188
DOI:10.1007/s11107-018-0783-7