LaAlO 3 /Si capacitors: Comparison of different molecular beam deposition conditions and their impact on electrical properties

A study of the structural and electrical properties of amorphous LaAlO3 (LAO)/Si thin films fabricated by molecular beam deposition (MBD) is presented. Two substrate preparation procedures have been explored namely a high temperature substrate preparation technique—leading to a step and terraces sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-01, Vol.113 (3)
Hauptverfasser: Pelloquin, Sylvain, Saint-Girons, Guillaume, Baboux, Nicolas, Albertini, David, Hourani, Wael, Penuelas, Jose, Grenet, Geneviève, Plossu, Carole, Hollinger, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A study of the structural and electrical properties of amorphous LaAlO3 (LAO)/Si thin films fabricated by molecular beam deposition (MBD) is presented. Two substrate preparation procedures have been explored namely a high temperature substrate preparation technique—leading to a step and terraces surface morphology—and a chemical HF-based surface cleaning. The LAO deposition conditions were improved by introducing atomic plasma-prepared oxygen instead of classical molecular O2 in the chamber. An Au/Ni stack was used as the top electrode for its electrical characteristics. The physico-chemical properties (surface topography, thickness homogeneity, LAO/Si interface quality) and electrical performance (capacitance and current versus voltage and TunA current topography) of the samples were systematically evaluated. Deposition conditions (substrate temperature of 550 °C, oxygen partial pressure settled at 10−6 Torr, and 550 W of power applied to the O2 plasma) and post-depositions treatments were investigated to optimize the dielectric constant (κ) and leakage currents density (JGate at |VGate| = |VFB − 1|). In the best reproducible conditions, we obtained a LAO/Si layer with a dielectric constant of 16, an equivalent oxide thickness of 8.7 Å, and JGate ≈ 10−2A/cm2. This confirms the importance of LaAlO3 as an alternative high-κ for ITRS sub-22 nm technology node.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4769890