Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process

Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2019-11, Vol.12 (5), Article 054051
Hauptverfasser: Mundhada, S.O., Grimm, A., Venkatraman, J., Minev, Z.K., Touzard, S., Frattini, N.E., Sivak, V.V., Sliwa, K., Reinhold, P., Shankar, S., Mirrahimi, M., Devoret, M.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review applied
container_volume 12
creator Mundhada, S.O.
Grimm, A.
Venkatraman, J.
Minev, Z.K.
Touzard, S.
Frattini, N.E.
Sivak, V.V.
Sliwa, K.
Reinhold, P.
Shankar, S.
Mirrahimi, M.
Devoret, M.H.
description Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes.
doi_str_mv 10.1103/PhysRevApplied.12.054051
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01936696v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01936696v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f9af9b81a1e567e91e4c0a919eb8d1f9bbd0f5d82519bc14539f4463a447ec803</originalsourceid><addsrcrecordid>eNpVkEFLw0AQhRdRsGj_w149pM5kd9PsMZRqCxVLUTwum2S2XUmTkA2l_femVkRP85h5M7z5GOMIE0QQj-vdKWzokLVt5amcYDwBJUHhFRvFQmA0BdTXf_QtG4fwCQCIsYIURmw5P7bU-T3Vva34ct9W9K1739S8cdzyjd3bOspC8KGnks_9dtdHH_ZA_MUffb3l664pKIR7duNsFWj8U-_Y-9P8bbaIVq_Py1m2iopYiz5y2jqdp2iRVDIljSQLsBo15WmJwygvwakyjRXqvECphHZSJsJKOaUiBXHHHi53d7Yy7RDddifTWG8W2cqce8OfIkl0csDBm168RdeE0JH7XUAwZ4LmP0GDsbkQFF8iLmgk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process</title><source>American Physical Society Journals</source><creator>Mundhada, S.O. ; Grimm, A. ; Venkatraman, J. ; Minev, Z.K. ; Touzard, S. ; Frattini, N.E. ; Sivak, V.V. ; Sliwa, K. ; Reinhold, P. ; Shankar, S. ; Mirrahimi, M. ; Devoret, M.H.</creator><creatorcontrib>Mundhada, S.O. ; Grimm, A. ; Venkatraman, J. ; Minev, Z.K. ; Touzard, S. ; Frattini, N.E. ; Sivak, V.V. ; Sliwa, K. ; Reinhold, P. ; Shankar, S. ; Mirrahimi, M. ; Devoret, M.H.</creatorcontrib><description>Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.12.054051</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Physics ; Quantum Physics</subject><ispartof>Physical review applied, 2019-11, Vol.12 (5), Article 054051</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f9af9b81a1e567e91e4c0a919eb8d1f9bbd0f5d82519bc14539f4463a447ec803</citedby><cites>FETCH-LOGICAL-c293t-f9af9b81a1e567e91e4c0a919eb8d1f9bbd0f5d82519bc14539f4463a447ec803</cites><orcidid>0000-0002-5952-0743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01936696$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mundhada, S.O.</creatorcontrib><creatorcontrib>Grimm, A.</creatorcontrib><creatorcontrib>Venkatraman, J.</creatorcontrib><creatorcontrib>Minev, Z.K.</creatorcontrib><creatorcontrib>Touzard, S.</creatorcontrib><creatorcontrib>Frattini, N.E.</creatorcontrib><creatorcontrib>Sivak, V.V.</creatorcontrib><creatorcontrib>Sliwa, K.</creatorcontrib><creatorcontrib>Reinhold, P.</creatorcontrib><creatorcontrib>Shankar, S.</creatorcontrib><creatorcontrib>Mirrahimi, M.</creatorcontrib><creatorcontrib>Devoret, M.H.</creatorcontrib><title>Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process</title><title>Physical review applied</title><description>Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes.</description><subject>Physics</subject><subject>Quantum Physics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLw0AQhRdRsGj_w149pM5kd9PsMZRqCxVLUTwum2S2XUmTkA2l_femVkRP85h5M7z5GOMIE0QQj-vdKWzokLVt5amcYDwBJUHhFRvFQmA0BdTXf_QtG4fwCQCIsYIURmw5P7bU-T3Vva34ct9W9K1739S8cdzyjd3bOspC8KGnks_9dtdHH_ZA_MUffb3l664pKIR7duNsFWj8U-_Y-9P8bbaIVq_Py1m2iopYiz5y2jqdp2iRVDIljSQLsBo15WmJwygvwakyjRXqvECphHZSJsJKOaUiBXHHHi53d7Yy7RDddifTWG8W2cqce8OfIkl0csDBm168RdeE0JH7XUAwZ4LmP0GDsbkQFF8iLmgk</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Mundhada, S.O.</creator><creator>Grimm, A.</creator><creator>Venkatraman, J.</creator><creator>Minev, Z.K.</creator><creator>Touzard, S.</creator><creator>Frattini, N.E.</creator><creator>Sivak, V.V.</creator><creator>Sliwa, K.</creator><creator>Reinhold, P.</creator><creator>Shankar, S.</creator><creator>Mirrahimi, M.</creator><creator>Devoret, M.H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5952-0743</orcidid></search><sort><creationdate>20191121</creationdate><title>Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process</title><author>Mundhada, S.O. ; Grimm, A. ; Venkatraman, J. ; Minev, Z.K. ; Touzard, S. ; Frattini, N.E. ; Sivak, V.V. ; Sliwa, K. ; Reinhold, P. ; Shankar, S. ; Mirrahimi, M. ; Devoret, M.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f9af9b81a1e567e91e4c0a919eb8d1f9bbd0f5d82519bc14539f4463a447ec803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mundhada, S.O.</creatorcontrib><creatorcontrib>Grimm, A.</creatorcontrib><creatorcontrib>Venkatraman, J.</creatorcontrib><creatorcontrib>Minev, Z.K.</creatorcontrib><creatorcontrib>Touzard, S.</creatorcontrib><creatorcontrib>Frattini, N.E.</creatorcontrib><creatorcontrib>Sivak, V.V.</creatorcontrib><creatorcontrib>Sliwa, K.</creatorcontrib><creatorcontrib>Reinhold, P.</creatorcontrib><creatorcontrib>Shankar, S.</creatorcontrib><creatorcontrib>Mirrahimi, M.</creatorcontrib><creatorcontrib>Devoret, M.H.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mundhada, S.O.</au><au>Grimm, A.</au><au>Venkatraman, J.</au><au>Minev, Z.K.</au><au>Touzard, S.</au><au>Frattini, N.E.</au><au>Sivak, V.V.</au><au>Sliwa, K.</au><au>Reinhold, P.</au><au>Shankar, S.</au><au>Mirrahimi, M.</au><au>Devoret, M.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process</atitle><jtitle>Physical review applied</jtitle><date>2019-11-21</date><risdate>2019</risdate><volume>12</volume><issue>5</issue><artnum>054051</artnum><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.12.054051</doi><orcidid>https://orcid.org/0000-0002-5952-0743</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2331-7019
ispartof Physical review applied, 2019-11, Vol.12 (5), Article 054051
issn 2331-7019
2331-7019
language eng
recordid cdi_hal_primary_oai_HAL_hal_01936696v1
source American Physical Society Journals
subjects Physics
Quantum Physics
title Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Implementation%20of%20a%20Raman-Assisted%20Eight-Wave%20Mixing%20Process&rft.jtitle=Physical%20review%20applied&rft.au=Mundhada,%20S.O.&rft.date=2019-11-21&rft.volume=12&rft.issue=5&rft.artnum=054051&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.12.054051&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01936696v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true