Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process
Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quant...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2019-11, Vol.12 (5), Article 054051 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physical review applied |
container_volume | 12 |
creator | Mundhada, S.O. Grimm, A. Venkatraman, J. Minev, Z.K. Touzard, S. Frattini, N.E. Sivak, V.V. Sliwa, K. Reinhold, P. Shankar, S. Mirrahimi, M. Devoret, M.H. |
description | Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes. |
doi_str_mv | 10.1103/PhysRevApplied.12.054051 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01936696v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01936696v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f9af9b81a1e567e91e4c0a919eb8d1f9bbd0f5d82519bc14539f4463a447ec803</originalsourceid><addsrcrecordid>eNpVkEFLw0AQhRdRsGj_w149pM5kd9PsMZRqCxVLUTwum2S2XUmTkA2l_femVkRP85h5M7z5GOMIE0QQj-vdKWzokLVt5amcYDwBJUHhFRvFQmA0BdTXf_QtG4fwCQCIsYIURmw5P7bU-T3Vva34ct9W9K1739S8cdzyjd3bOspC8KGnks_9dtdHH_ZA_MUffb3l664pKIR7duNsFWj8U-_Y-9P8bbaIVq_Py1m2iopYiz5y2jqdp2iRVDIljSQLsBo15WmJwygvwakyjRXqvECphHZSJsJKOaUiBXHHHi53d7Yy7RDddifTWG8W2cqce8OfIkl0csDBm168RdeE0JH7XUAwZ4LmP0GDsbkQFF8iLmgk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process</title><source>American Physical Society Journals</source><creator>Mundhada, S.O. ; Grimm, A. ; Venkatraman, J. ; Minev, Z.K. ; Touzard, S. ; Frattini, N.E. ; Sivak, V.V. ; Sliwa, K. ; Reinhold, P. ; Shankar, S. ; Mirrahimi, M. ; Devoret, M.H.</creator><creatorcontrib>Mundhada, S.O. ; Grimm, A. ; Venkatraman, J. ; Minev, Z.K. ; Touzard, S. ; Frattini, N.E. ; Sivak, V.V. ; Sliwa, K. ; Reinhold, P. ; Shankar, S. ; Mirrahimi, M. ; Devoret, M.H.</creatorcontrib><description>Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.12.054051</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Physics ; Quantum Physics</subject><ispartof>Physical review applied, 2019-11, Vol.12 (5), Article 054051</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f9af9b81a1e567e91e4c0a919eb8d1f9bbd0f5d82519bc14539f4463a447ec803</citedby><cites>FETCH-LOGICAL-c293t-f9af9b81a1e567e91e4c0a919eb8d1f9bbd0f5d82519bc14539f4463a447ec803</cites><orcidid>0000-0002-5952-0743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01936696$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mundhada, S.O.</creatorcontrib><creatorcontrib>Grimm, A.</creatorcontrib><creatorcontrib>Venkatraman, J.</creatorcontrib><creatorcontrib>Minev, Z.K.</creatorcontrib><creatorcontrib>Touzard, S.</creatorcontrib><creatorcontrib>Frattini, N.E.</creatorcontrib><creatorcontrib>Sivak, V.V.</creatorcontrib><creatorcontrib>Sliwa, K.</creatorcontrib><creatorcontrib>Reinhold, P.</creatorcontrib><creatorcontrib>Shankar, S.</creatorcontrib><creatorcontrib>Mirrahimi, M.</creatorcontrib><creatorcontrib>Devoret, M.H.</creatorcontrib><title>Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process</title><title>Physical review applied</title><description>Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes.</description><subject>Physics</subject><subject>Quantum Physics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLw0AQhRdRsGj_w149pM5kd9PsMZRqCxVLUTwum2S2XUmTkA2l_femVkRP85h5M7z5GOMIE0QQj-vdKWzokLVt5amcYDwBJUHhFRvFQmA0BdTXf_QtG4fwCQCIsYIURmw5P7bU-T3Vva34ct9W9K1739S8cdzyjd3bOspC8KGnks_9dtdHH_ZA_MUffb3l664pKIR7duNsFWj8U-_Y-9P8bbaIVq_Py1m2iopYiz5y2jqdp2iRVDIljSQLsBo15WmJwygvwakyjRXqvECphHZSJsJKOaUiBXHHHi53d7Yy7RDddifTWG8W2cqce8OfIkl0csDBm168RdeE0JH7XUAwZ4LmP0GDsbkQFF8iLmgk</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Mundhada, S.O.</creator><creator>Grimm, A.</creator><creator>Venkatraman, J.</creator><creator>Minev, Z.K.</creator><creator>Touzard, S.</creator><creator>Frattini, N.E.</creator><creator>Sivak, V.V.</creator><creator>Sliwa, K.</creator><creator>Reinhold, P.</creator><creator>Shankar, S.</creator><creator>Mirrahimi, M.</creator><creator>Devoret, M.H.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5952-0743</orcidid></search><sort><creationdate>20191121</creationdate><title>Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process</title><author>Mundhada, S.O. ; Grimm, A. ; Venkatraman, J. ; Minev, Z.K. ; Touzard, S. ; Frattini, N.E. ; Sivak, V.V. ; Sliwa, K. ; Reinhold, P. ; Shankar, S. ; Mirrahimi, M. ; Devoret, M.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f9af9b81a1e567e91e4c0a919eb8d1f9bbd0f5d82519bc14539f4463a447ec803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mundhada, S.O.</creatorcontrib><creatorcontrib>Grimm, A.</creatorcontrib><creatorcontrib>Venkatraman, J.</creatorcontrib><creatorcontrib>Minev, Z.K.</creatorcontrib><creatorcontrib>Touzard, S.</creatorcontrib><creatorcontrib>Frattini, N.E.</creatorcontrib><creatorcontrib>Sivak, V.V.</creatorcontrib><creatorcontrib>Sliwa, K.</creatorcontrib><creatorcontrib>Reinhold, P.</creatorcontrib><creatorcontrib>Shankar, S.</creatorcontrib><creatorcontrib>Mirrahimi, M.</creatorcontrib><creatorcontrib>Devoret, M.H.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mundhada, S.O.</au><au>Grimm, A.</au><au>Venkatraman, J.</au><au>Minev, Z.K.</au><au>Touzard, S.</au><au>Frattini, N.E.</au><au>Sivak, V.V.</au><au>Sliwa, K.</au><au>Reinhold, P.</au><au>Shankar, S.</au><au>Mirrahimi, M.</au><au>Devoret, M.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process</atitle><jtitle>Physical review applied</jtitle><date>2019-11-21</date><risdate>2019</risdate><volume>12</volume><issue>5</issue><artnum>054051</artnum><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.12.054051</doi><orcidid>https://orcid.org/0000-0002-5952-0743</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-7019 |
ispartof | Physical review applied, 2019-11, Vol.12 (5), Article 054051 |
issn | 2331-7019 2331-7019 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01936696v1 |
source | American Physical Society Journals |
subjects | Physics Quantum Physics |
title | Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Implementation%20of%20a%20Raman-Assisted%20Eight-Wave%20Mixing%20Process&rft.jtitle=Physical%20review%20applied&rft.au=Mundhada,%20S.O.&rft.date=2019-11-21&rft.volume=12&rft.issue=5&rft.artnum=054051&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.12.054051&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01936696v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |