Experimental Implementation of a Raman-Assisted Eight-Wave Mixing Process
Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quant...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2019-11, Vol.12 (5), Article 054051 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonlinear processes in the quantum regime are essential for many applications, such as quantum-limited amplification, measurement, and control of quantum systems. In particular, the field of quantum error correction relies heavily on high-order nonlinear interactions between various modes of a quantum system. However, the required order of nonlinearity is often not directly available or weak compared to dissipation present in the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearity by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transition. In particular, we show a transformation of four photons of a high-Q superconducting resonator into two excitations of a superconducting transmon mode and two pump photons, and vice versa. The resulting eight-wave mixing process is obtained by cascading two fourth-order nonlinear processes through a virtual state. We expect this type of process to become a key component of hardware-efficient quantum error correction using continuous-variable error-correction codes. |
---|---|
ISSN: | 2331-7019 2331-7019 |
DOI: | 10.1103/PhysRevApplied.12.054051 |