Biomimetic layer-by-layer templates for calcium phosphate biomineralization
Carboxylated, sulfated and/or phosphorylated surfaces are admitted as potential optimal templates for biomimetic deposition of calcium phosphate (CaP) coatings in view of improving implants’ osseointegration. Layer-by-layer films were built up consisting of anionic chondroitin sulfate (ChS), a biolo...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2012-09, Vol.8 (9), p.3419-3428 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carboxylated, sulfated and/or phosphorylated surfaces are admitted as potential optimal templates for biomimetic deposition of calcium phosphate (CaP) coatings in view of improving implants’ osseointegration. Layer-by-layer films were built up consisting of anionic chondroitin sulfate (ChS), a biological carboxylated and sulfated polysaccharide and cationic poly(l-lysine) (PLL). The films were used as soft matrices to immobilize a model phosphoprotein, phosvitin (PhV). The respective roles of ChS, PLL and PhV terminal layers on the heterogeneous nucleation kinetics and the structure of CaP deposits obtained from supersaturated solutions were inspected. Critical supersaturation ratios and induction times preceding heterogeneous nucleation were precisely determined and interpreted within the framework of classical nucleation theory in order to derive the effective interfacial energies of CaP crystals. It was found that the potency of terminal layers toward CaP nucleation increased in the order: PLL |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2012.05.035 |