Pressure-temperature phase diagram of the dimorphism of the anti-inflammatory drug nimesulide

[Display omitted] Understanding the phase behavior of active pharmaceutical ingredients is important for formulations of dosage forms and regulatory reasons. Nimesulide is an anti-inflammatory drug that is known to exhibit dimorphism; however up to now its stability behavior was not clear, as few th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2017-06, Vol.525 (1), p.54-59
Hauptverfasser: Barrio, M., Huguet, J., Robert, B., Rietveld, I.B., Céolin, R., Tamarit, J.Ll
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Understanding the phase behavior of active pharmaceutical ingredients is important for formulations of dosage forms and regulatory reasons. Nimesulide is an anti-inflammatory drug that is known to exhibit dimorphism; however up to now its stability behavior was not clear, as few thermodynamic data were available. Therefore, calorimetric melting data have been obtained, which were found to be TI-L=422.4±1.0K, ΔI→LH=117.5±5.2Jg−1,TII-L=419.8±1.0K and ΔII→LH=108.6±3.3Jg−1. In addition, vapor-pressure data, high-pressure melting data, and specific volumes have been obtained. It is demonstrated that form II is intrinsically monotropic in relation to form I and the latter would thus be the best polymorph to use for drug formulations. This result has been obtained by experimental means, involving high-pressure measurements. Furthermore, it has been shown that with very limited experimental and statistical data, the same conclusion can be obtained, demonstrating that in first instance topological pressure-temperature phase diagrams can be obtained without necessarily measuring any high-pressure data. It provides a quick method to verify the phase behavior of the known phases of an active pharmaceutical ingredient under different pressure and temperature conditions.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2017.04.016