Pressure-temperature phase diagram of the dimorphism of the anti-inflammatory drug nimesulide
[Display omitted] Understanding the phase behavior of active pharmaceutical ingredients is important for formulations of dosage forms and regulatory reasons. Nimesulide is an anti-inflammatory drug that is known to exhibit dimorphism; however up to now its stability behavior was not clear, as few th...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2017-06, Vol.525 (1), p.54-59 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Understanding the phase behavior of active pharmaceutical ingredients is important for formulations of dosage forms and regulatory reasons. Nimesulide is an anti-inflammatory drug that is known to exhibit dimorphism; however up to now its stability behavior was not clear, as few thermodynamic data were available. Therefore, calorimetric melting data have been obtained, which were found to be TI-L=422.4±1.0K, ΔI→LH=117.5±5.2Jg−1,TII-L=419.8±1.0K and ΔII→LH=108.6±3.3Jg−1. In addition, vapor-pressure data, high-pressure melting data, and specific volumes have been obtained. It is demonstrated that form II is intrinsically monotropic in relation to form I and the latter would thus be the best polymorph to use for drug formulations. This result has been obtained by experimental means, involving high-pressure measurements. Furthermore, it has been shown that with very limited experimental and statistical data, the same conclusion can be obtained, demonstrating that in first instance topological pressure-temperature phase diagrams can be obtained without necessarily measuring any high-pressure data. It provides a quick method to verify the phase behavior of the known phases of an active pharmaceutical ingredient under different pressure and temperature conditions. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2017.04.016 |