Room-Temperature AlGaN/GaN Terahertz Plasmonic Detectors with a Zero-Bias Grating

In this paper, we present sensitivity measurement as well as measured and calculated absorption spectra for AlGaN/GaN THz plasmonic detector made of a metallic grating in-between two ohmic contacts. Detectors with different grating patterns have been fabricated and their sensitivity, reaching 1.9 μA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2016-03, Vol.37 (3), p.243-257
Hauptverfasser: Spisser, H., Grimault-Jacquin, A.-S., Zerounian, N., Aassime, A., Cao, L., Boone, F., Maher, H., Cordier, Y., Aniel, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present sensitivity measurement as well as measured and calculated absorption spectra for AlGaN/GaN THz plasmonic detector made of a metallic grating in-between two ohmic contacts. Detectors with different grating patterns have been fabricated and their sensitivity, reaching 1.9 μA/W at 77 K and 0.7 μA/W at 300 K, measured with a voltage applied between the ohmic contacts. It is the first time that such a detector shows THz detection with no voltage applied on the grating, namely with a bidimensional electron gas (2DEG) having a homogeneous electron density. These results are consistent with detection by drag-effect rectification. Measurements held between 0.648 and 0.690 THz show that the dependence of the sensitivity on the frequency follows the absorption spectrum, indicating that absorption is a crucial step in the detection process. Further simulations of absorption spectra show the tunability offered by such detector and allow us to predict frequency behavior for grating-biased detectors as well, in which the rectification is mainly governed by ratchet effect.
ISSN:1866-6892
1866-6906
DOI:10.1007/s10762-015-0224-y