Tropical plant communities modify soil aggregate stability along a successional vegetation gradient on a Ferralsol
[Display omitted] •High values of aggregate stability were found in all plant communities.•The presence of iron sesquioxides explain the high values of aggregate stability.•Along the succession gradient, aggregate stability was modified by plant communities.•Three species with a very positive impact...
Gespeichert in:
Veröffentlicht in: | Ecological engineering 2017-12, Vol.109 (B), p.161-168 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•High values of aggregate stability were found in all plant communities.•The presence of iron sesquioxides explain the high values of aggregate stability.•Along the succession gradient, aggregate stability was modified by plant communities.•Three species with a very positive impact on aggregate stability were identified.•Vegetation dynamics are reflected in aggregate stability values.
Soil aggregate stability is viewed as a promising indicator of the restoration status in eroded ecosystems, where the change in plant community composition through successional dynamics is a key driver of ecosystem restoration. In many tropical regions, ecological restoration is an important issue, but the relationship between different types of plant communities and soil aggregate stability is poorly understood. We examined how tropical plant communities modified soil aggregate stability along a successional vegetation gradient on a Ferralsol in New Caledonia. We identified five plant communities, ranging from an early (sedge dominated ecosystems) to a late successional stage (well-established, dense, mixed rainforest). Aggregate stability, total soil organic carbon (SOC) and iron and aluminium sesquioxides were measured in soil originating from each community. Results showed that aggregate stability of the Ferralsol was very high, even on eroded sites, likely due to the high levels of iron and aluminium sesquioxides. The levels of iron sesquioxides were particularly high (>10%), due partly to the frequency of wildfires in the region. Total SOC increased from sedge-dominated communities (3.5%). Aggregate stability was modified by plant cover and community composition and increased from sparse, early successional vegetation to late successional dense, mixed rainforest. Our study showed that certain plant species have a positive impact on soil aggregate stability and should be considered for ecological restoration on Ferralsols. e.g., Costularia arundinacea, Garcinia amplexicaulis and Myodocarpus fraxinifolius. In conclusion, we suggest that vegetation dynamics should be taken into account when investigating changes in aggregate stability in a context of ecosystem restoration. |
---|---|
ISSN: | 0925-8574 1872-6992 |
DOI: | 10.1016/j.ecoleng.2017.07.027 |