Quantitative Analysis of Boundary Layers in Periodic Homogenization

We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2017-11, Vol.226 (2), p.695-741
Hauptverfasser: Armstrong, Scott, Kuusi, Tuomo, Mourrat, Jean-Christophe, Prange, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 741
container_issue 2
container_start_page 695
container_title Archive for rational mechanics and analysis
container_volume 226
creator Armstrong, Scott
Kuusi, Tuomo
Mourrat, Jean-Christophe
Prange, Christophe
description We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.
doi_str_mv 10.1007/s00205-017-1142-z
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01915562v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01915562v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-30aa8f3dc50a13e11dd73a3a61d96b40f24c968ba33bfb4f59ff160eef7b66b03</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4G2vHqIzyW7SPdairbCggp5DdjepKW0iybbQPr27rHj0NPzD_w3DR8gtwj0CyIcEwKCggJIi5oyezsgEc84oCMnPyQQAOC0LJi_JVUqbITIuJmTxvte-c53u3MFkc6-3x-RSFmz2GPa-1fGYVfpoYsqcz95MdKF1TbYKu7A23p16LPhrcmH1Npmb3zkln89PH4sVrV6XL4t5RZucY0c5aD2zvG0K0MgNYttKrrkW2JaizsGyvCnFrNac17bObVFaiwKMsbIWogY-JXfj3S-9Vd_R7frvVNBOreaVGnaAJRaFYAfsuzh2mxhSisb-AQhqMKZGYz0j1WBMnXqGjUzqu35totqEfeyVpH-gH9AAbuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative Analysis of Boundary Layers in Periodic Homogenization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Armstrong, Scott ; Kuusi, Tuomo ; Mourrat, Jean-Christophe ; Prange, Christophe</creator><creatorcontrib>Armstrong, Scott ; Kuusi, Tuomo ; Mourrat, Jean-Christophe ; Prange, Christophe</creatorcontrib><description>We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-017-1142-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis of PDEs ; Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Mathematics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2017-11, Vol.226 (2), p.695-741</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-30aa8f3dc50a13e11dd73a3a61d96b40f24c968ba33bfb4f59ff160eef7b66b03</citedby><cites>FETCH-LOGICAL-c431t-30aa8f3dc50a13e11dd73a3a61d96b40f24c968ba33bfb4f59ff160eef7b66b03</cites><orcidid>0000-0002-1395-081X ; 0000-0002-2980-725X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-017-1142-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-017-1142-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01915562$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Armstrong, Scott</creatorcontrib><creatorcontrib>Kuusi, Tuomo</creatorcontrib><creatorcontrib>Mourrat, Jean-Christophe</creatorcontrib><creatorcontrib>Prange, Christophe</creatorcontrib><title>Quantitative Analysis of Boundary Layers in Periodic Homogenization</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.</description><subject>Analysis of PDEs</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4G2vHqIzyW7SPdairbCggp5DdjepKW0iybbQPr27rHj0NPzD_w3DR8gtwj0CyIcEwKCggJIi5oyezsgEc84oCMnPyQQAOC0LJi_JVUqbITIuJmTxvte-c53u3MFkc6-3x-RSFmz2GPa-1fGYVfpoYsqcz95MdKF1TbYKu7A23p16LPhrcmH1Npmb3zkln89PH4sVrV6XL4t5RZucY0c5aD2zvG0K0MgNYttKrrkW2JaizsGyvCnFrNac17bObVFaiwKMsbIWogY-JXfj3S-9Vd_R7frvVNBOreaVGnaAJRaFYAfsuzh2mxhSisb-AQhqMKZGYz0j1WBMnXqGjUzqu35totqEfeyVpH-gH9AAbuY</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Armstrong, Scott</creator><creator>Kuusi, Tuomo</creator><creator>Mourrat, Jean-Christophe</creator><creator>Prange, Christophe</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1395-081X</orcidid><orcidid>https://orcid.org/0000-0002-2980-725X</orcidid></search><sort><creationdate>20171101</creationdate><title>Quantitative Analysis of Boundary Layers in Periodic Homogenization</title><author>Armstrong, Scott ; Kuusi, Tuomo ; Mourrat, Jean-Christophe ; Prange, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-30aa8f3dc50a13e11dd73a3a61d96b40f24c968ba33bfb4f59ff160eef7b66b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis of PDEs</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, Scott</creatorcontrib><creatorcontrib>Kuusi, Tuomo</creatorcontrib><creatorcontrib>Mourrat, Jean-Christophe</creatorcontrib><creatorcontrib>Prange, Christophe</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, Scott</au><au>Kuusi, Tuomo</au><au>Mourrat, Jean-Christophe</au><au>Prange, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Analysis of Boundary Layers in Periodic Homogenization</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>226</volume><issue>2</issue><spage>695</spage><epage>741</epage><pages>695-741</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-017-1142-z</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0002-1395-081X</orcidid><orcidid>https://orcid.org/0000-0002-2980-725X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2017-11, Vol.226 (2), p.695-741
issn 0003-9527
1432-0673
language eng
recordid cdi_hal_primary_oai_HAL_hal_01915562v1
source SpringerLink Journals - AutoHoldings
subjects Analysis of PDEs
Classical Mechanics
Complex Systems
Fluid- and Aerodynamics
Mathematical and Computational Physics
Mathematics
Physics
Physics and Astronomy
Theoretical
title Quantitative Analysis of Boundary Layers in Periodic Homogenization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Analysis%20of%20Boundary%20Layers%20in%20Periodic%20Homogenization&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Armstrong,%20Scott&rft.date=2017-11-01&rft.volume=226&rft.issue=2&rft.spage=695&rft.epage=741&rft.pages=695-741&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-017-1142-z&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01915562v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true