Quantitative Analysis of Boundary Layers in Periodic Homogenization
We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2017-11, Vol.226 (2), p.695-741 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-017-1142-z |