Quantitative Analysis of Boundary Layers in Periodic Homogenization

We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2017-11, Vol.226 (2), p.695-741
Hauptverfasser: Armstrong, Scott, Kuusi, Tuomo, Mourrat, Jean-Christophe, Prange, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-017-1142-z