Local Energy Weak Solutions for the Navier–Stokes Equations in the Half-Space

The purpose of this paper is to prove the existence of global in time local energy weak solutions to the Navier–Stokes equations in the half-space R + 3 . Such solutions are sometimes called Lemarié–Rieusset solutions in the whole space R 3 . The main tool in our work is an explicit representation f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-04, Vol.367 (2), p.517-580
Hauptverfasser: Maekawa, Yasunori, Miura, Hideyuki, Prange, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to prove the existence of global in time local energy weak solutions to the Navier–Stokes equations in the half-space R + 3 . Such solutions are sometimes called Lemarié–Rieusset solutions in the whole space R 3 . The main tool in our work is an explicit representation formula for the pressure, which is decomposed into a Helmholtz–Leray part and a harmonic part due to the boundary. We also explain how our result enables to reprove the blow-up of the scale-critical L 3 ( R + 3 ) norm obtained by Barker and Seregin for solutions developing a singularity in finite time.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03344-4