Perturbation theory challenge for cosmological parameters estimation: Matter power spectrum in real space

We study the accuracy with which cosmological parameters can be determined from a real space power spectrum of matter density contrast at weakly nonlinear scales using analytical approaches. From power spectra measured in N -body simulations and using the Markov chain Monte Carlo technique, the best...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-03, Vol.99 (6), Article 063530
Hauptverfasser: Osato, Ken, Nishimichi, Takahiro, Bernardeau, Francis, Taruya, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the accuracy with which cosmological parameters can be determined from a real space power spectrum of matter density contrast at weakly nonlinear scales using analytical approaches. From power spectra measured in N -body simulations and using the Markov chain Monte Carlo technique, the best-fitting cosmological input parameters are determined with several analytical methods as a theoretical template, such as the standard perturbation theory, the regularized perturbation theory, and the effective field theory. We show that at redshift 1, all two-loop level calculations can fit the measured power spectrum down to scales k ∼ 0.2 h Mpc − 1 , and cosmological parameters are successfully estimated in an unbiased way. Introducing the figure of bias (FoB) and figure of merit (FoM) parameter, we determine the validity range of those models and then evaluate their relative performances. With one free parameter, namely the damping scale, the regularized perturbation theory is found to be able to provide the largest FoM parameter while keeping the FoB in the acceptance range.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.99.063530