Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation

Feedback processes from baryons are expected to strongly affect weak-lensing observables of current and future cosmological surveys. In this paper we present a new parametrisation of halo profiles based on gas, stellar, and dark matter density components. This parametrisation is used to modify outpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2019-03, Vol.2019 (3), p.20-20
Hauptverfasser: Schneider, Aurel, Teyssier, Romain, Stadel, Joachim, Chisari, Nora Elisa, Brun, Amandine M.C. Le, Amara, Adam, Refregier, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 3
container_start_page 20
container_title Journal of cosmology and astroparticle physics
container_volume 2019
creator Schneider, Aurel
Teyssier, Romain
Stadel, Joachim
Chisari, Nora Elisa
Brun, Amandine M.C. Le
Amara, Adam
Refregier, Alexandre
description Feedback processes from baryons are expected to strongly affect weak-lensing observables of current and future cosmological surveys. In this paper we present a new parametrisation of halo profiles based on gas, stellar, and dark matter density components. This parametrisation is used to modify outputs of gravity-only N-body simulations (following the prescription of [1]) in order to mimic baryonic effects on the matter density field. The resulting baryonic correction model relies on a few well motivated physical parameters and is able to reproduce the redshift zero clustering signal of hydrodynamical simulations at two percent accuracy below k∼10 h/Mpc. A detailed study of the baryon suppression effects on the matter power spectrum and the weak lensing shear correlation reveals that the signal is dominated by two parameters describing the slope of the gas profile in haloes and the maximum radius of gas ejection. We show that these parameters can be constrained with the observed gas fraction of galaxy groups and clusters from X-ray data. Based on these observations we predict a beyond percent effect on the power spectrum above k=0.2–1.0 h/Mpc with a maximum suppression of 15–25 percent around k∼10 h/Mpc. As a result, the weak lensing angular shear power spectrum is suppressed by 15–25 percent at scales beyond ℓ∼100–600 and the shear correlations ξ+ and ξ− are affected at the 10–25 percent level below 5 and 50 arc-minutes, respectively. The relatively large uncertainties of these predictions are a result of the poorly known hydrostatic mass bias of current X-ray observations as well as the generic difficulty to observe the low density gas outside of haloes.
doi_str_mv 10.1088/1475-7516/2019/03/020
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01914458v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357580033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-6790f66bd66471c34c8985bfb49ae3bf2d9120a86bae20949e9d2dff77dece893</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWKs_QQj45MO6uewleSxFrVAQQV8N2d2J3brd1CRr6b83a6X4MjOcORxmPoSuKbmjRIiUZmWelDktUkaoTAlPCSMnaHLUT__N5-jC-zUhrOBcTND7y6D70Jp923_gSru97TEYA3XwOI5hBXijQwCHt3YXq9_GlRs2WPfN73YH-hN30PsxwK9AO1xb56DTobX9JTozuvNw9den6O3h_nW-SJbPj0_z2TKpuaAhKUpJTFFUTVFkJa15Vgsp8spUmdTAK8MaSRnRoqg0MCIzCbJhjTFl2UANQvIpuj3krnSntq7dxE-U1a1azJZq1CIYmmW5-KbRe3Pwbp39GsAHtbaD6-N5ivG8zAUhnEdXfnDVznrvwBxjKVEjdjUiVSNSNWJXhKuInf8AEUJ13w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357580033</pqid></control><display><type>article</type><title>Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Schneider, Aurel ; Teyssier, Romain ; Stadel, Joachim ; Chisari, Nora Elisa ; Brun, Amandine M.C. Le ; Amara, Adam ; Refregier, Alexandre</creator><creatorcontrib>Schneider, Aurel ; Teyssier, Romain ; Stadel, Joachim ; Chisari, Nora Elisa ; Brun, Amandine M.C. Le ; Amara, Adam ; Refregier, Alexandre</creatorcontrib><description>Feedback processes from baryons are expected to strongly affect weak-lensing observables of current and future cosmological surveys. In this paper we present a new parametrisation of halo profiles based on gas, stellar, and dark matter density components. This parametrisation is used to modify outputs of gravity-only N-body simulations (following the prescription of [1]) in order to mimic baryonic effects on the matter density field. The resulting baryonic correction model relies on a few well motivated physical parameters and is able to reproduce the redshift zero clustering signal of hydrodynamical simulations at two percent accuracy below k∼10 h/Mpc. A detailed study of the baryon suppression effects on the matter power spectrum and the weak lensing shear correlation reveals that the signal is dominated by two parameters describing the slope of the gas profile in haloes and the maximum radius of gas ejection. We show that these parameters can be constrained with the observed gas fraction of galaxy groups and clusters from X-ray data. Based on these observations we predict a beyond percent effect on the power spectrum above k=0.2–1.0 h/Mpc with a maximum suppression of 15–25 percent around k∼10 h/Mpc. As a result, the weak lensing angular shear power spectrum is suppressed by 15–25 percent at scales beyond ℓ∼100–600 and the shear correlations ξ+ and ξ− are affected at the 10–25 percent level below 5 and 50 arc-minutes, respectively. The relatively large uncertainties of these predictions are a result of the poorly known hydrostatic mass bias of current X-ray observations as well as the generic difficulty to observe the low density gas outside of haloes.</description><identifier>ISSN: 1475-7516</identifier><identifier>ISSN: 1475-7508</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2019/03/020</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Astrophysics ; Baryons ; Clustering ; Computer simulation ; Correlation ; Dark matter ; Density ; Galactic clusters ; Galaxies ; Parameterization ; Parameters ; Physical properties ; Physics ; Rarefied gases ; Red shift ; Shear</subject><ispartof>Journal of cosmology and astroparticle physics, 2019-03, Vol.2019 (3), p.20-20</ispartof><rights>Copyright IOP Publishing Mar 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-6790f66bd66471c34c8985bfb49ae3bf2d9120a86bae20949e9d2dff77dece893</citedby><cites>FETCH-LOGICAL-c381t-6790f66bd66471c34c8985bfb49ae3bf2d9120a86bae20949e9d2dff77dece893</cites><orcidid>0000-0003-3481-3491 ; 0000-0001-7689-0933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01914458$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, Aurel</creatorcontrib><creatorcontrib>Teyssier, Romain</creatorcontrib><creatorcontrib>Stadel, Joachim</creatorcontrib><creatorcontrib>Chisari, Nora Elisa</creatorcontrib><creatorcontrib>Brun, Amandine M.C. Le</creatorcontrib><creatorcontrib>Amara, Adam</creatorcontrib><creatorcontrib>Refregier, Alexandre</creatorcontrib><title>Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation</title><title>Journal of cosmology and astroparticle physics</title><description>Feedback processes from baryons are expected to strongly affect weak-lensing observables of current and future cosmological surveys. In this paper we present a new parametrisation of halo profiles based on gas, stellar, and dark matter density components. This parametrisation is used to modify outputs of gravity-only N-body simulations (following the prescription of [1]) in order to mimic baryonic effects on the matter density field. The resulting baryonic correction model relies on a few well motivated physical parameters and is able to reproduce the redshift zero clustering signal of hydrodynamical simulations at two percent accuracy below k∼10 h/Mpc. A detailed study of the baryon suppression effects on the matter power spectrum and the weak lensing shear correlation reveals that the signal is dominated by two parameters describing the slope of the gas profile in haloes and the maximum radius of gas ejection. We show that these parameters can be constrained with the observed gas fraction of galaxy groups and clusters from X-ray data. Based on these observations we predict a beyond percent effect on the power spectrum above k=0.2–1.0 h/Mpc with a maximum suppression of 15–25 percent around k∼10 h/Mpc. As a result, the weak lensing angular shear power spectrum is suppressed by 15–25 percent at scales beyond ℓ∼100–600 and the shear correlations ξ+ and ξ− are affected at the 10–25 percent level below 5 and 50 arc-minutes, respectively. The relatively large uncertainties of these predictions are a result of the poorly known hydrostatic mass bias of current X-ray observations as well as the generic difficulty to observe the low density gas outside of haloes.</description><subject>Astrophysics</subject><subject>Baryons</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Dark matter</subject><subject>Density</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Rarefied gases</subject><subject>Red shift</subject><subject>Shear</subject><issn>1475-7516</issn><issn>1475-7508</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkFtLAzEQhYMoWKs_QQj45MO6uewleSxFrVAQQV8N2d2J3brd1CRr6b83a6X4MjOcORxmPoSuKbmjRIiUZmWelDktUkaoTAlPCSMnaHLUT__N5-jC-zUhrOBcTND7y6D70Jp923_gSru97TEYA3XwOI5hBXijQwCHt3YXq9_GlRs2WPfN73YH-hN30PsxwK9AO1xb56DTobX9JTozuvNw9den6O3h_nW-SJbPj0_z2TKpuaAhKUpJTFFUTVFkJa15Vgsp8spUmdTAK8MaSRnRoqg0MCIzCbJhjTFl2UANQvIpuj3krnSntq7dxE-U1a1azJZq1CIYmmW5-KbRe3Pwbp39GsAHtbaD6-N5ivG8zAUhnEdXfnDVznrvwBxjKVEjdjUiVSNSNWJXhKuInf8AEUJ13w</recordid><startdate>20190311</startdate><enddate>20190311</enddate><creator>Schneider, Aurel</creator><creator>Teyssier, Romain</creator><creator>Stadel, Joachim</creator><creator>Chisari, Nora Elisa</creator><creator>Brun, Amandine M.C. Le</creator><creator>Amara, Adam</creator><creator>Refregier, Alexandre</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3481-3491</orcidid><orcidid>https://orcid.org/0000-0001-7689-0933</orcidid></search><sort><creationdate>20190311</creationdate><title>Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation</title><author>Schneider, Aurel ; Teyssier, Romain ; Stadel, Joachim ; Chisari, Nora Elisa ; Brun, Amandine M.C. Le ; Amara, Adam ; Refregier, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-6790f66bd66471c34c8985bfb49ae3bf2d9120a86bae20949e9d2dff77dece893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrophysics</topic><topic>Baryons</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Dark matter</topic><topic>Density</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Rarefied gases</topic><topic>Red shift</topic><topic>Shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Aurel</creatorcontrib><creatorcontrib>Teyssier, Romain</creatorcontrib><creatorcontrib>Stadel, Joachim</creatorcontrib><creatorcontrib>Chisari, Nora Elisa</creatorcontrib><creatorcontrib>Brun, Amandine M.C. Le</creatorcontrib><creatorcontrib>Amara, Adam</creatorcontrib><creatorcontrib>Refregier, Alexandre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Aurel</au><au>Teyssier, Romain</au><au>Stadel, Joachim</au><au>Chisari, Nora Elisa</au><au>Brun, Amandine M.C. Le</au><au>Amara, Adam</au><au>Refregier, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2019-03-11</date><risdate>2019</risdate><volume>2019</volume><issue>3</issue><spage>20</spage><epage>20</epage><pages>20-20</pages><issn>1475-7516</issn><issn>1475-7508</issn><eissn>1475-7516</eissn><abstract>Feedback processes from baryons are expected to strongly affect weak-lensing observables of current and future cosmological surveys. In this paper we present a new parametrisation of halo profiles based on gas, stellar, and dark matter density components. This parametrisation is used to modify outputs of gravity-only N-body simulations (following the prescription of [1]) in order to mimic baryonic effects on the matter density field. The resulting baryonic correction model relies on a few well motivated physical parameters and is able to reproduce the redshift zero clustering signal of hydrodynamical simulations at two percent accuracy below k∼10 h/Mpc. A detailed study of the baryon suppression effects on the matter power spectrum and the weak lensing shear correlation reveals that the signal is dominated by two parameters describing the slope of the gas profile in haloes and the maximum radius of gas ejection. We show that these parameters can be constrained with the observed gas fraction of galaxy groups and clusters from X-ray data. Based on these observations we predict a beyond percent effect on the power spectrum above k=0.2–1.0 h/Mpc with a maximum suppression of 15–25 percent around k∼10 h/Mpc. As a result, the weak lensing angular shear power spectrum is suppressed by 15–25 percent at scales beyond ℓ∼100–600 and the shear correlations ξ+ and ξ− are affected at the 10–25 percent level below 5 and 50 arc-minutes, respectively. The relatively large uncertainties of these predictions are a result of the poorly known hydrostatic mass bias of current X-ray observations as well as the generic difficulty to observe the low density gas outside of haloes.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2019/03/020</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3481-3491</orcidid><orcidid>https://orcid.org/0000-0001-7689-0933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1475-7516
ispartof Journal of cosmology and astroparticle physics, 2019-03, Vol.2019 (3), p.20-20
issn 1475-7516
1475-7508
1475-7516
language eng
recordid cdi_hal_primary_oai_HAL_hal_01914458v1
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects Astrophysics
Baryons
Clustering
Computer simulation
Correlation
Dark matter
Density
Galactic clusters
Galaxies
Parameterization
Parameters
Physical properties
Physics
Rarefied gases
Red shift
Shear
title Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20baryon%20effects%20on%20the%20matter%20power%20spectrum%20and%20the%20weak%20lensing%20shear%20correlation&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Schneider,%20Aurel&rft.date=2019-03-11&rft.volume=2019&rft.issue=3&rft.spage=20&rft.epage=20&rft.pages=20-20&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2019/03/020&rft_dat=%3Cproquest_hal_p%3E2357580033%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357580033&rft_id=info:pmid/&rfr_iscdi=true