Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation

Feedback processes from baryons are expected to strongly affect weak-lensing observables of current and future cosmological surveys. In this paper we present a new parametrisation of halo profiles based on gas, stellar, and dark matter density components. This parametrisation is used to modify outpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2019-03, Vol.2019 (3), p.20-20
Hauptverfasser: Schneider, Aurel, Teyssier, Romain, Stadel, Joachim, Chisari, Nora Elisa, Brun, Amandine M.C. Le, Amara, Adam, Refregier, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feedback processes from baryons are expected to strongly affect weak-lensing observables of current and future cosmological surveys. In this paper we present a new parametrisation of halo profiles based on gas, stellar, and dark matter density components. This parametrisation is used to modify outputs of gravity-only N-body simulations (following the prescription of [1]) in order to mimic baryonic effects on the matter density field. The resulting baryonic correction model relies on a few well motivated physical parameters and is able to reproduce the redshift zero clustering signal of hydrodynamical simulations at two percent accuracy below k∼10 h/Mpc. A detailed study of the baryon suppression effects on the matter power spectrum and the weak lensing shear correlation reveals that the signal is dominated by two parameters describing the slope of the gas profile in haloes and the maximum radius of gas ejection. We show that these parameters can be constrained with the observed gas fraction of galaxy groups and clusters from X-ray data. Based on these observations we predict a beyond percent effect on the power spectrum above k=0.2–1.0 h/Mpc with a maximum suppression of 15–25 percent around k∼10 h/Mpc. As a result, the weak lensing angular shear power spectrum is suppressed by 15–25 percent at scales beyond ℓ∼100–600 and the shear correlations ξ+ and ξ− are affected at the 10–25 percent level below 5 and 50 arc-minutes, respectively. The relatively large uncertainties of these predictions are a result of the poorly known hydrostatic mass bias of current X-ray observations as well as the generic difficulty to observe the low density gas outside of haloes.
ISSN:1475-7516
1475-7508
1475-7516
DOI:10.1088/1475-7516/2019/03/020