Characterizing young protostellar disks with the CALYPSO IRAM-PdBI survey: large Class 0 disks are rare

Context. Understanding the formation mechanisms of protoplanetary disks and multiple systems and also their pristine properties are key questions for modern astrophysics. The properties of the youngest disks, embedded in rotating infalling protostellar envelopes, have largely remained unconstrained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2019-01, Vol.621 (621), p.A76
Hauptverfasser: Maury, A. J., André, Ph, Testi, L., Maret, S., Belloche, A., Hennebelle, P., Cabrit, S., Codella, C., Gueth, F., Podio, L., Anderl, S., Bacmann, A., Bontemps, S., Gaudel, M., Ladjelate, B., Lefèvre, C., Tabone, B., Lefloch, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. Understanding the formation mechanisms of protoplanetary disks and multiple systems and also their pristine properties are key questions for modern astrophysics. The properties of the youngest disks, embedded in rotating infalling protostellar envelopes, have largely remained unconstrained up to now. Aims. We aim to observe the youngest protostars with a spatial resolution that is high enough to resolve and characterize the progenitors of protoplanetary disks. This can only be achieved using submillimeter and millimeter interferometric facilities. In the framework of the IRAM Plateau de Bure Interferometer survey CALYPSO, we have obtained subarcsecond observations of the dust continuum emission at 231 and 94 GHz for a sample of 16 solar-type Class 0 protostars. Methods. In an attempt to identify disk-like structures embedded at small scales in the protostellar envelopes, we modeled the dust continuum emission visibility profiles using Plummer-like envelope models and envelope models that include additional Gaussian disk-like components. Results. Our analysis shows that in the CALYPSO sample, 11 of the 16 Class 0 protostars are better reproduced by models including a disk-like dust continuum component contributing to the flux at small scales, but less than 25% of these candidate protostellar disks are resolved at radii >60 au. Including all available literature constraints on Class 0 disks at subarcsecond scales, we show that our results are representative: most (>72% in a sample of 26 protostars) Class 0 protostellar disks are small and emerge only at radii
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/201833537