Comparative DFT study of the adsorption of 1,3-butadiene, 1-butene and 2- cis/trans-butenes on the Pt(1 1 1) and Pd(1 1 1) surfaces

The interaction of 1,3-butadiene, 1-butene and 2- cis/trans-butenes on the Pt(1 1 1) and Pd(1 1 1) surfaces has been studied with density functional theory methods (DFT). The same most stable adsorption modes have been found on both metal surfaces with similar adsorption energies. For 1,3-butadiene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2004-01, Vol.549 (2), p.121-133
Hauptverfasser: Valcárcel, Ana, Clotet, Anna, Ricart, Josep M., Delbecq, Françoise, Sautet, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction of 1,3-butadiene, 1-butene and 2- cis/trans-butenes on the Pt(1 1 1) and Pd(1 1 1) surfaces has been studied with density functional theory methods (DFT). The same most stable adsorption modes have been found on both metal surfaces with similar adsorption energies. For 1,3-butadiene the 1,2,3,4-tetra-σ adsorption structure is shown to be the most stable one, in competition with a 1,4-metallacycle-type mode, which is only less stable by 10–12 kJ mol −1. On Pt(1 1 1) these total energy calculations were combined with simulations of the vibrational spectra. This confirms that the 1,2,3,4-tetra-σ adsorption is the most probable adsorption structure, but cannot exclude the 1,4-metallacycle as a minority species. Although similar in type and energy, the adsorption on the Pd(1 1 1) surface shows a markedly different geometry, with a smaller molecular distortion upon adsorption. The most stable adsorption structure for the butene isomers is the di-σ-mode. Similarly to the case of the 1,3-butadiene, the adsorption geometry is closer to the gas phase one on Pd than on Pt, hence explaining the different spectroscopic results, without the previously assumed requirement of a different binding mode. Moreover the present study has shown that the different selectivity observed on Pt(1 1 1) and Pd(1 1 1) for the hydrogenation reaction of butadiene cannot be satisfactory explained by the single comparison of the relative stabilities of 1,3-butadiene and 1-butene on these metals.
ISSN:0039-6028
1879-2758
DOI:10.1016/j.susc.2003.11.036