Galois descent of semi-affinoid spaces

We study the Galois descent of semi-affinoid non-archimedean analytic spaces. These are the non-archimedean analytic spaces which admit an affine special formal scheme as model over a complete discrete valuation ring, such as for example open or closed polydiscs or polyannuli. Using Weil restriction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2018-12, Vol.290 (3-4), p.1085-1114
Hauptverfasser: Fantini, Lorenzo, Turchetti, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1114
container_issue 3-4
container_start_page 1085
container_title Mathematische Zeitschrift
container_volume 290
creator Fantini, Lorenzo
Turchetti, Daniele
description We study the Galois descent of semi-affinoid non-archimedean analytic spaces. These are the non-archimedean analytic spaces which admit an affine special formal scheme as model over a complete discrete valuation ring, such as for example open or closed polydiscs or polyannuli. Using Weil restrictions and Galois fixed loci for semi-affinoid spaces and their formal models, we describe a formal model of a K -analytic space X , provided that X ⊗ K L is semi-affinoid for some finite tamely ramified extension L of K . As an application, we study the forms of analytic annuli that are trivialized by a wide class of Galois extensions that includes totally tamely ramified extensions. In order to do so, we first establish a Weierstrass preparation result for analytic functions on annuli, and use it to linearize finite order automorphisms of annuli. Finally, we explain how from these results one can deduce a non-archimedean analytic proof of the existence of resolutions of singularities of surfaces in characteristic zero.
doi_str_mv 10.1007/s00209-018-2054-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01905973v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110887873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8f8f25fb5673232dd046d80e772e58acd1df9cceb87fcc3f01decc43453d2b2a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCIHiITr6a5FiKbYWCFz2HNB-6pd3UpBX892ZZ0ZOngZnnfRhehK4J3BMA-VAAKGgMRGEKgmN9gkaEM4qJouwUjepZYKEkP0cXpWwA6lHyEbpd2G1qS-NDcaE7NCk2JexabGNsu9T6puytC-USnUW7LeHqZ47R6_zxZbbEq-fF02y6wo5pdsAqqkhFXIuJZJRR74FPvIIgJQ1CWeeJj9q5sFYyOsciEB-c44wL5umaWjZGd4P33W7NPrc7m79Msq1ZTlem3wHRILRkn6SyNwO7z-njGMrBbNIxd_U9QwkBpaSSrFJkoFxOpeQQf7UETF-dGaqrZmX66oyuGTpkSmW7t5D_zP-HvgGW4m7k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110887873</pqid></control><display><type>article</type><title>Galois descent of semi-affinoid spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Fantini, Lorenzo ; Turchetti, Daniele</creator><creatorcontrib>Fantini, Lorenzo ; Turchetti, Daniele</creatorcontrib><description>We study the Galois descent of semi-affinoid non-archimedean analytic spaces. These are the non-archimedean analytic spaces which admit an affine special formal scheme as model over a complete discrete valuation ring, such as for example open or closed polydiscs or polyannuli. Using Weil restrictions and Galois fixed loci for semi-affinoid spaces and their formal models, we describe a formal model of a K -analytic space X , provided that X ⊗ K L is semi-affinoid for some finite tamely ramified extension L of K . As an application, we study the forms of analytic annuli that are trivialized by a wide class of Galois extensions that includes totally tamely ramified extensions. In order to do so, we first establish a Weierstrass preparation result for analytic functions on annuli, and use it to linearize finite order automorphisms of annuli. Finally, we explain how from these results one can deduce a non-archimedean analytic proof of the existence of resolutions of singularities of surfaces in characteristic zero.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-018-2054-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytic functions ; Annuli ; Automorphisms ; Descent ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Singularity (mathematics)</subject><ispartof>Mathematische Zeitschrift, 2018-12, Vol.290 (3-4), p.1085-1114</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8f8f25fb5673232dd046d80e772e58acd1df9cceb87fcc3f01decc43453d2b2a3</citedby><cites>FETCH-LOGICAL-c393t-8f8f25fb5673232dd046d80e772e58acd1df9cceb87fcc3f01decc43453d2b2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-018-2054-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-018-2054-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01905973$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fantini, Lorenzo</creatorcontrib><creatorcontrib>Turchetti, Daniele</creatorcontrib><title>Galois descent of semi-affinoid spaces</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We study the Galois descent of semi-affinoid non-archimedean analytic spaces. These are the non-archimedean analytic spaces which admit an affine special formal scheme as model over a complete discrete valuation ring, such as for example open or closed polydiscs or polyannuli. Using Weil restrictions and Galois fixed loci for semi-affinoid spaces and their formal models, we describe a formal model of a K -analytic space X , provided that X ⊗ K L is semi-affinoid for some finite tamely ramified extension L of K . As an application, we study the forms of analytic annuli that are trivialized by a wide class of Galois extensions that includes totally tamely ramified extensions. In order to do so, we first establish a Weierstrass preparation result for analytic functions on annuli, and use it to linearize finite order automorphisms of annuli. Finally, we explain how from these results one can deduce a non-archimedean analytic proof of the existence of resolutions of singularities of surfaces in characteristic zero.</description><subject>Analytic functions</subject><subject>Annuli</subject><subject>Automorphisms</subject><subject>Descent</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singularity (mathematics)</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuCIHiITr6a5FiKbYWCFz2HNB-6pd3UpBX892ZZ0ZOngZnnfRhehK4J3BMA-VAAKGgMRGEKgmN9gkaEM4qJouwUjepZYKEkP0cXpWwA6lHyEbpd2G1qS-NDcaE7NCk2JexabGNsu9T6puytC-USnUW7LeHqZ47R6_zxZbbEq-fF02y6wo5pdsAqqkhFXIuJZJRR74FPvIIgJQ1CWeeJj9q5sFYyOsciEB-c44wL5umaWjZGd4P33W7NPrc7m79Msq1ZTlem3wHRILRkn6SyNwO7z-njGMrBbNIxd_U9QwkBpaSSrFJkoFxOpeQQf7UETF-dGaqrZmX66oyuGTpkSmW7t5D_zP-HvgGW4m7k</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Fantini, Lorenzo</creator><creator>Turchetti, Daniele</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20181201</creationdate><title>Galois descent of semi-affinoid spaces</title><author>Fantini, Lorenzo ; Turchetti, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8f8f25fb5673232dd046d80e772e58acd1df9cceb87fcc3f01decc43453d2b2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytic functions</topic><topic>Annuli</topic><topic>Automorphisms</topic><topic>Descent</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fantini, Lorenzo</creatorcontrib><creatorcontrib>Turchetti, Daniele</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fantini, Lorenzo</au><au>Turchetti, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Galois descent of semi-affinoid spaces</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>290</volume><issue>3-4</issue><spage>1085</spage><epage>1114</epage><pages>1085-1114</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We study the Galois descent of semi-affinoid non-archimedean analytic spaces. These are the non-archimedean analytic spaces which admit an affine special formal scheme as model over a complete discrete valuation ring, such as for example open or closed polydiscs or polyannuli. Using Weil restrictions and Galois fixed loci for semi-affinoid spaces and their formal models, we describe a formal model of a K -analytic space X , provided that X ⊗ K L is semi-affinoid for some finite tamely ramified extension L of K . As an application, we study the forms of analytic annuli that are trivialized by a wide class of Galois extensions that includes totally tamely ramified extensions. In order to do so, we first establish a Weierstrass preparation result for analytic functions on annuli, and use it to linearize finite order automorphisms of annuli. Finally, we explain how from these results one can deduce a non-archimedean analytic proof of the existence of resolutions of singularities of surfaces in characteristic zero.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-018-2054-9</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2018-12, Vol.290 (3-4), p.1085-1114
issn 0025-5874
1432-1823
language eng
recordid cdi_hal_primary_oai_HAL_hal_01905973v1
source Springer Nature - Complete Springer Journals
subjects Analytic functions
Annuli
Automorphisms
Descent
Mathematical analysis
Mathematics
Mathematics and Statistics
Singularity (mathematics)
title Galois descent of semi-affinoid spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Galois%20descent%20of%20semi-affinoid%20spaces&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Fantini,%20Lorenzo&rft.date=2018-12-01&rft.volume=290&rft.issue=3-4&rft.spage=1085&rft.epage=1114&rft.pages=1085-1114&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-018-2054-9&rft_dat=%3Cproquest_hal_p%3E2110887873%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110887873&rft_id=info:pmid/&rfr_iscdi=true