Galois descent of semi-affinoid spaces

We study the Galois descent of semi-affinoid non-archimedean analytic spaces. These are the non-archimedean analytic spaces which admit an affine special formal scheme as model over a complete discrete valuation ring, such as for example open or closed polydiscs or polyannuli. Using Weil restriction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2018-12, Vol.290 (3-4), p.1085-1114
Hauptverfasser: Fantini, Lorenzo, Turchetti, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Galois descent of semi-affinoid non-archimedean analytic spaces. These are the non-archimedean analytic spaces which admit an affine special formal scheme as model over a complete discrete valuation ring, such as for example open or closed polydiscs or polyannuli. Using Weil restrictions and Galois fixed loci for semi-affinoid spaces and their formal models, we describe a formal model of a K -analytic space X , provided that X ⊗ K L is semi-affinoid for some finite tamely ramified extension L of K . As an application, we study the forms of analytic annuli that are trivialized by a wide class of Galois extensions that includes totally tamely ramified extensions. In order to do so, we first establish a Weierstrass preparation result for analytic functions on annuli, and use it to linearize finite order automorphisms of annuli. Finally, we explain how from these results one can deduce a non-archimedean analytic proof of the existence of resolutions of singularities of surfaces in characteristic zero.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-018-2054-9