Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films
Using grazing-incidence x-ray diffraction and scanning tunneling microscopy (STM), we show that the thermal decomposition of an electronic-grade wafer of 6H-SiC after annealing at increasing temperatures TA between 1080 and 1320 °C leads to the layer-by-layer growth of unconstrained, heteroepitaxial...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2002-09, Vol.92 (5), p.2479-2484 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using grazing-incidence x-ray diffraction and scanning tunneling microscopy (STM), we show that the thermal decomposition of an electronic-grade wafer of 6H-SiC after annealing at increasing temperatures TA between 1080 and 1320 °C leads to the layer-by-layer growth of unconstrained, heteroepitaxial single-crystalline graphite. The limited width of the in-plane diffraction rod profiles of graphite reveals large terraces, with an average size larger than 200 Å and a very small azimuthal disorientation. The overlayer is unstrained and adopts the crystalline parameter of bulk graphite even at the smallest coverage studied, which corresponds to a single graphene plane, as inferred from the flat out-of-plane diffraction profile. By increasing TA, additional graphene planes can be grown below this graphite layer from the solid-state decomposition of SiC, forming the AB stacking of Bernal graphite. A C-rich precursor is evidenced in STM by an intrinsic (6×6) reconstruction made of ordered ring or starlike structures. The resulting epitaxial film is indistinguishable from a bulk graphite single crystal. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1498962 |