Necking of the Lithosphere: A Reappraisal of Basic Concepts With Thermo‐Mechanical Numerical Modeling

We investigate lithosphere necking using two‐dimensional thermo‐mechanical numerical simulations without strain softening or weakening mechanisms. The models have an initial small sinusoidal perturbation of the Moho depth, whose wavelength corresponds to the model width. Applied boundary conditions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2018-06, Vol.123 (6), p.5279-5299
Hauptverfasser: Chenin, Pauline, Schmalholz, Stefan M., Manatschal, Gianreto, Karner, Garry D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate lithosphere necking using two‐dimensional thermo‐mechanical numerical simulations without strain softening or weakening mechanisms. The models have an initial small sinusoidal perturbation of the Moho depth, whose wavelength corresponds to the model width. Applied boundary conditions (constant extension velocity or bulk extension rate) and initial model width significantly impact the necking dynamics. For constant bulk extension rates, wider models generate more intense necking with locally higher strain rates, whereas for constant velocity extension, models evolution is similar independent on their initial width. However, the width of the final necking zones ranges consistently between 45 and 105 km, independent on the type of applied boundary conditions and the initial Moho wavelength. The modeled widths are similar to along dip necking zones widths of natural rifted margins that formed during a single, unidirectional, and relatively continuous extensional event (e.g., Iberia‐Newfoundland margins, Porcupine Basin, Gulf of Aden). When the crust is mechanically decoupled from the mantle by a weak ductile lower crust, models exhibit three characteristic stages: (1) distributed thinning and extension associated with progressive subsidence; (2) upper mantle necking compensated by flow of the weak lower crust, which hampers both crustal thinning and subsidence at the rift center; and (3) crustal necking associated with fast subsidence after the mantle has necked. Decoupled models display regions of relatively thick crust on one or both sides of the rift center, comparable to the Galicia, Rockall, Hatton, and Porcupine Banks along the North Atlantic rifted margins. Key Points Modeled and natural necking zones widths are consistent without need for strain softening or weakening mechanisms Boundary conditions type and initial Moho wavelength do not impact modeled necking zones width Asynchronous and depth‐dependent crust/mantle necking results in a complex surface topography evolution
ISSN:2169-9313
2169-9356
DOI:10.1029/2017JB014155