Bias correction in conditional multivariate extremes

We consider bias-corrected estimation of the stable tail dependence function in the regression context. To this aim, we first estimate the bias of a smoothed estimator of the stable tail dependence function, and then we subtract it from the estimator. The weak convergence, as a stochastic process, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of statistics 2020-01, Vol.14 (1), p.1773-1795
Hauptverfasser: Escobar-Bach, Mikael, Goegebeur, Yuri, Guillou, Armelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider bias-corrected estimation of the stable tail dependence function in the regression context. To this aim, we first estimate the bias of a smoothed estimator of the stable tail dependence function, and then we subtract it from the estimator. The weak convergence, as a stochastic process, of the resulting asymptotically unbiased estimator of the conditional stable tail dependence function, correctly normalized, is established under mild assumptions, the covariate argument being fixed. The finite sample behaviour of our asymptotically unbiased estimator is then illustrated on a simulation study and compared to two alternatives, which are not bias corrected. Finally, our methodology is applied to a dataset of air pollution measurements.
ISSN:1935-7524
1935-7524
DOI:10.1214/20-EJS1706