CMOS buried quad p-n junction photodetector for multi-wavelength analysis
This paper presents a buried quad p-n junction (BQJ) photodetector fabricated with a HV (high-voltage) CMOS process. Multiple buried junction photodetectors are wavelength-sensitive devices developed for spectral analysis applications where a compact integrated solution is preferred over systems inv...
Gespeichert in:
Veröffentlicht in: | Optics express 2012-01, Vol.20 (3), p.2053-2061 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a buried quad p-n junction (BQJ) photodetector fabricated with a HV (high-voltage) CMOS process. Multiple buried junction photodetectors are wavelength-sensitive devices developed for spectral analysis applications where a compact integrated solution is preferred over systems involving bulk optics or a spectrometer due to physical size limitations. The BQJ device presented here is designed for chip-based biochemical analyses using simultaneous fluorescence labeling of multiple analytes such as with advanced labs-on-chip or miniaturized photonics-based biosensors. Modeling and experimental measurements of the spectral response of the device are presented. A matrix-based method for estimating individual spectral components in a compound spectrum is described. The device and analysis method are validated via a test setup using individually modulated LEDs to simulate light from 4-component fluorescence emission. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.20.002053 |