Mixture Martingales Revisited with Applications to Sequential Tests and Confidence Intervals

This paper presents new deviation inequalities that are valid uniformly in time under adaptive sampling in a multi-armed bandit model. The deviations are measured using the Kullback-Leibler divergence in a given one-dimensional exponential family, and may take into account several arms at a time. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of machine learning research 2021-12
Hauptverfasser: Kaufmann, Emilie, Koolen, Wouter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents new deviation inequalities that are valid uniformly in time under adaptive sampling in a multi-armed bandit model. The deviations are measured using the Kullback-Leibler divergence in a given one-dimensional exponential family, and may take into account several arms at a time. They are obtained by constructing for each arm a mixture martingale based on a hierarchical prior, and by multiplying those martingales. Our deviation inequalities allow us to analyze stopping rules based on generalized likelihood ratios for a large class of sequential identification problems, and to construct tight confidence intervals for some functions of the means of the arms.
ISSN:1532-4435
1533-7928